

Fuze Modeling Grand Challenge: Computational Comparisons

Janet Wolfson, Ph.D., P.E., Jonathon Hong, Jacob Dodson, Ph.D., P.E. Fuzes Branch, AFRL (AFRL/RWMF) 850-883-0573 (DSN 875-0573) janet.wolfson.1@us.af.mil

Caveat's to the Methodology

- Baseline study to understand current capability to do a pure prediction
- Manufacturing and test induced hardware defects that have not been characterized
- Traditional M&S processes to improve simulations are not being funded in this effort. Including detailed analysis of the effects on:
 - Materials
 - Methods
 - Experimental uncertainties
 - Known-unknowns/ unknown-unknowns

Goal of program is to look at *trends* of the predictions to *understand fundamental challenges* in models, data, or experimental practices

Experimental Setup

MTS-66 Drop Tower

Dist A: Approved for Public Release

MTS Drop Tower Video

Drop Tower Video, Real Time

Drop Tower Video, High Speed Video

Dist A: Approved for Public Release

Initial Conditions

Serial Number	Drop Height	Mitigator	Duration Description	Frequency Description	Unit Condition
104	20"	1/16" F1 Felt	Short	High	Pristine
104	72"	1/2" F1 Felt	Long	Low	Pristine

Peak - 11.6 kg, Duration $- \sim 0.15$ msec

Peak - 15.1 kg, Duration – 0.32 msec

Dist A: Approved for Public Release

10 kHz Filtered Time History – SD/HF

Dist A: Approved for Public Release

Peak and Duration SD/HF

Other Metrics Short Duration/High Frequency

10 kHz Filtered Time History – LD/LF

Peak and Duration LD/LF

Other Metrics LD/LF

Item to Item Variation

Dist A: Approved for Public Release

Next Steps

- Performers utilized the same techniques of applying an input load to the fuze component for the penetration test
- Last experiment will include modeling the entire penetration event and predict the response

Cannon Test

Dist A: Approved for Public Release

End of Program Output

- Best Practices Document is being developed for modeling and experimentation
- Training Class at Shock and Vibration Exchange has been developed based on these outputs
- Data will be shared via DTIC and DoD Fuze IPT to all interested parties

Conclusions

- Very successful with this last prediction
 - Performers believe this is due to experience with these types of predictions
- Initial cannon testing prediction is almost complete
- Final prediction will be an end-to-end penetration prediction
- Project will complete next year
- Best Practices document and presentation will be developed and shared with the DoD and industry