„The Power of the Fuze“

60th Annual Fuze Conference
May 11th, 2017
Harald Wich
Diehl & Eagle Picher GmbH
Overview

- History, the large Calibre Fuzes
- Requirements
- Challenges
- Miniaturised Fuze Batteries
- New Test Equipment
- Conclusions
Legacy Fuze Batteries

- PS115 (lead)
- MOFA post launch
- DEP 1400x series

- Requirements
 - Power $1 - 5$ W
 - Energy $200 - 500$ J
 - Life time < 200 s
 - Rise time > 100 ms
The “Onset”

- In our 2011 presentation ...

we have analysed the requirements ...

... and proposed a small Fuze battery
The Start

- Naively we thought …
 - substitute a 5 – 10 mJ set-back-generator
 - with a 100 mJ fuze battery
 - ¼ the size of the generator

is not a big issue
we used to build Artillery/Mortar-Fuze Batteries with 10,000 times more Capacity

just reduce the diameter by a factor of 3 and
the height by factor of 2.5
Customers Challenge

- Our 2014 presentation …

Power Supply

- All new electronic Subsystems are
 - Low voltage 1.7 - 8.5 V
 - Low current 5 - 110 mA
 - Low power 10 - 300 mW

- Typical combinations for medium caliber
 \[P_{\text{Peak}} = 50 - 500 \text{ mW} \]
 flight times of 10 - 20 sec sum up to \(E = 0.5 - 10 \text{ J} \)

- Sophisticated Power management is required to lower Energy

supplemented by DoD 2014.1 SBIR

- rise time < 10/100 ms
- current > 2/40 mA
- voltage > 2.9 V

our customer survey

Anforderungen/Randbedingungen

Electrical data

- Voltage: As high as possible to reduce current. We are thinking 3-4 cells in series (if possible).
 - Minimum voltage level TBD

- Energy: Shall 0.5 Joule, Should 1 Joule

- Activation: Should 50 msec, Shall 100 msec (min 300 mJ delivered at this time to capacitor)

- Type of load: DC/DC converter (switching type). Up to 10 W can be consumed by the converter for a short time.
Bottom Line

- Requirement “Challenges/Highlights” *
 - Voltage as high as possible
 - Energy hundred’s of mJ
 - Power most of the Energy within ms some W’s
 - Current hundred’s of mA
 - Rise time almost instantaneously \(t_r = \text{close to zero} \)
 - Life time up to 60 s
 - Environment spinning and none spinning

* fortunately not all cumulative
Our first small Battery

- High Acceleration (no/low spin)

DEP 14103 at -46°C
The next small Battery

- DEP14202.01

reflecting new customer requirements

DEP14202.z; -46°C, spin
Early Voltage/Power Capability

- **Load-Test**

![Graph showing load-test results]

2s Battery
- \(P \approx 500 \text{ mW/cm}^2 \) \(@ \) 100 ms
- \(E \approx 40 \text{ mJ/cm}^2 \) until 100 ms

Power = \(f(t) \)

Energy = \(f(t) \)
Load Management

- **Load Profile**

- avoid (delay) high current until battery is sufficiently activated (electrolyte has reached the place where it is supposed to be)

- high capacitive load can be even worse (remember: empty capacitor is a “short circuit”)
New Lab-Test-Equipment
New Lab-Test-Equipment

- External Load Panel (e.g. Maccor) or Customer Breadboard
- Synchronised Load and Data Recording
- Spin Rate up to 18,000 rpm
- Test-Time up to 500 s (actually unlimited)
First Results

- **DEP14202.02**
 = none spinning mod of DEP14202.01
Conclusion

- Lithium Reserve Batteries provide very short Activation Time
 - under high forces
 - Acceleration
 - Spin
 - if properly designed
 - under proper load management
Conclusion

- Lithium Reserve Batteries provide very short Activation Time
 - under high forces
 - Acceleration
 - Spin
 - if properly designed
 - under proper load management

Lithium Reserve Batteries are able to provide “In-Barrel” Power!
Thank you for your attention!

Questions?

… and don´t forget talk to us about YOUR requirements!
Diehl & Eagle Picher Contact

- How to Contact us
 - Presenter Harald Wich
 - Mail Diehl & Eagle Picher GmbH
 Fischbachstrasse 20
 90552 Roethenbach a d Pegnitz
 Germany
 - Phone +49-911-957-2100
 - Fax +49-911-957-2485
 - Email harald.wich@diehl-eagle-picher.com
 - Web www.battery.de