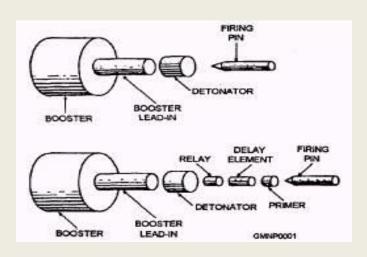
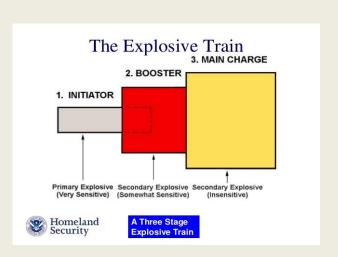


UNPARALLELED COMMITMENT & SOLUTIONS

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

Act like someone's life depends on what we do.





WHAT IS PRIMARY EXPLOSIVE?

- Generates a detonation wave when subjected to heat, flame, impact, friction or an electric spark
- Initiates secondary or booster explosive, which will initiate the main charge explosive or propellant
- Most widely used is lead azide or lead styphnate
- Primary explosive and its formulations are incorporated in detonators, primers, blasting caps, igniters, etc.

LEAD AZIDE & LEAD STYPHNATE

Lead azide (LA):

- Most commonly used as the main component in detonators and blasting caps dating back to World War II era
- Several common varieties:
 - Dextrinated "commercial grade", less output, safer production/handling
 - RD-1333 "military grade", higher performance/reliability in small size applications
 - Special Purpose (SPLA) very similar composition & performance to RD-1333; often used interchangeably
- Only 3 current sources of militaryqualified RD-1333/SPLA:
 - lowa stockpile
 - TechOrd/Chemring, South Dakota
 - Dyna Nobel, Germany
- Reacts with moisture and copper

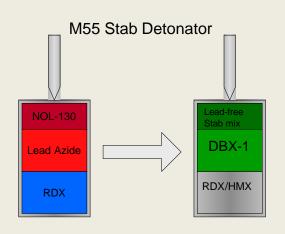
Lead Styphnate (LS):

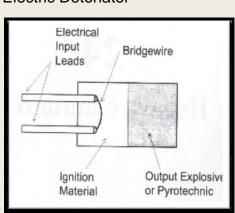
- Less powerful than LA, but easier to initiate by impact (e.g., firing pin); high thermal output
- Typically employed in primers or as the initiating element in detonators and blasting caps
- Most ammunition manufacturers produce their own
- Two common types:
 - Basic
 - Normal

LEAD AZIDE

$$O_2N$$
 NO_2
 H_2O

NORMAL LEAD STYPHNATE




OBJECTIVE

- ➤ Replace lead azide as transfer charge and lead styphnate spot charge with DBX-1 in M100 electric detonator
- Replace lead azide as transfer charge AND lead azide/lead styphnate from stab initiation mix with DBX-1 in M55 stab detonator

DBX-1: BLUF

- Strict new environmental regulations may disrupt supply of the older lead/mercury based explosives as well as restrict training
 - Exposure of personnel to human health hazards must be reduced/eliminated
- DBX-1 is a green primary explosive developed to replace toxic/hazardous lead & mercury based compounds (LA, most of LS, DXN-1)
- Successfully tested in multiple detonator platforms as well as primers
- Material cost will be comparable or cheaper than lead azide

Lead Azide & Lead Styphnate Issues

ESOH Issues:

- Lead azide and lead styphnate are the two common primary explosives used in detonators, primers, blasting caps, etc. for military and commercial applications
- Lead affects health and environment
 - Lead released as air emissions at firing site (training facility, shoot houses, indoor ranges)
 - Soldier/worker exposure in training facility, field, production plant or demil
 - EPA: There are no safe exposure levels for lead

Changing Regulation:

- National Academy of Sciences (NAS) Study in 2013: Current lead Operators Exposure Level (OEL) not protective of workers and soldiers
- Public Health Center (PHC) evaluating reduced OEL for DoD operations

Current Status:

- Usage: High (billions of items produced/used per year)
- Weapon Systems: 1000s of items use lead in primers/detonators

M100 ELECTRIC DETONATOR

- Smallest detonator in mass production
- Hot wire ignition
- Nickel chrome bridgewire
- Lead styphnate spot charge
- Lead azide intermediate charge
- HMX output charge

COLUMN SIZE

- Outer diameter: 0.100"
- Inner explosive diameter: 0.075"
- Total column height: 0.190"

TESTING REQUIREMENT

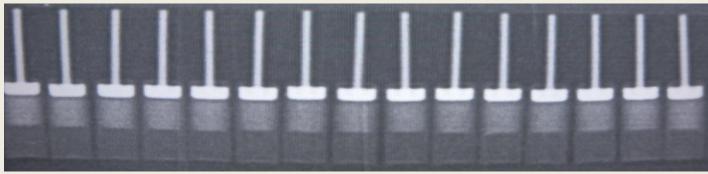
- Output dent :
 - greater or equal to 0.005"
- Typical dents for standard M100:
 - 0.010" 0.016"
- All Fire Parameters
 - -1.6V
 - 100µF capacitor

2013: TRIAL OF VARIOUS IGNITION CHARGES TO IMPROVE FUNCTION

Test results & observations:

- Colloidal Lead Azide spot charge
 - No success with standard bridge wire / firing energy
- Lead Styphnate double spot charge
 - No improvement of high order function
- Milled DBX-1 spot charge
 - Shows great promise for use to replace lead styphnate ignition charge.
 - Equal firing energy and increased output vs. lead styphnate.

2013: CHARGE CUP EXPERIMENTS


- Loading:
 - Lead styphnate spot charge
 - DBX-1 intermediate charge
 - HMX output charge
- Multiple groups loaded, each time making adjustments to improve results
 - HMX column height adjusted to maximize the increment height of DBX-1
 - Optimized consolidation pressure on DBX-1 increment
- Results:
 - Eliminated low order functions
 - Good output dents

Functioned M100

X-ray of loaded M100's

High Order: good dents on witness block

MILLED DBX-1 SPOT CHARGE

- Made small batches of slurry spot charge using DBX-1
- First tried only coating bridge wire with DBX-1 spot charge and functioned
 - Standard M100 headers used
 - Standard Ni Chrome Bridge Wire
 - Standard All Fire Energy
 - 100% Function with Zero Duds
 - All fire sensitivity equal to lead styphnate
 .999 All fire energy = 1.38 Volts
 - Greater audible report increased output

Various Bridge Wires study with DBX-1 ARDEC

Characteristics	M84 Platinum wire	Tungsten Metal wire	Platinum –Iridium Wire
Thickness	0.00023"	0.00012"	0.0005"
Resistance	Lower than standard M100		~0.5 ohms
Fire-Level	100% function: 0.999 all fire level – 1.182V	100% function: 1.25V Not as low as M84	2.37V (much higher than standard M100)
Conclusion	-Viable alternative bridgewire -Good for special applications where lower all fire energy is required	- No further testing was done as all fire level is higher than M84 wire test results	- No further testing was done since this thick wire is not needed

M100 WITH DBX-1 SPOT CHARGE& DBX-1 INTERMEDIATE CHARGE

- Milled DBX-1 spot charge instead of lead styphnate spot charge
- DBX-1 as intermediate charge to replace lead azide
- Standard HMX Output Charge
- Heights of HMX and DBX-1 increments were varied to establish loading parameters
 - ✓ All groups tested successfully
 - ✓ No low Order Functions.

> Results:

✓ Completed and passed full LAT per MIL-D-48120 requirements—
sample size of 325 detonators

M55 STAB DETONATOR

- One of the most common stab detonator used for mortar and artillery fuze
- NOL-130 initiation charge
- Lead azide intermediate charge
- RDX output charge

TESTING REQUIREMENT

- Output dent :
 - greater or equal to 0.010"
- Initiated by pin, ball weighs 0.25 oz at a drop height of 3"

M55 (STAB DETONATOR)

- Working with Action manufacturing co. to make "green" M55
 - Load in M55 detonators with DBX-1 as transfer charge to replace lead azide
 - Load in M55 detonators with "green" stab mix to replace lead azide and lead styphnate from NOL-130
 - Function as per Mil-Spec (qty: 500)

RESULTS/PLAN - M55

- Fabricated special milling jar to make "green" NOL-130
- ARDEC/Action working parallel to create green stab mix
- Action is optimizing the loading parameters for stab mix and transfer charge

STAB INITIATION MIX

- NOL-130 stab mix, used in many stab detonators
 - Initiates when impacted by a firing pin
 - Consists of tetracene, barium nitrate, lead azide, lead styphnate and antimony sulfide
 - Replaced lead based compounds with DBX-1 to make NOL-130G (Green)
 - NOL-130G successfully initiated the explosive train comparable to standard M55
 - Minimum dent depth requirement is 0.01"

Initiating Charge (mg)	Transfer Charge (mg)	Output Charge (mg)	Dent Depth (in)
NOL-130	Lead Azide	RDX	0.0148
NOL-130 "G"	Lead Azide	RDX	0.0140
NOL-130	DBX-1	RDX	0.0153
NOL-130 "G"	DBX-1	RDX	0.0123

SUMMARY

- DBX-1 shows great promise as replacement for lead azide & lead styphnate in M100's
- Loading parameters adjusted significantly from standard M100 loading parameters
 - Column heights
 - Consolidation pressures
- Milled DBX-1 spot charge:
 - Flowed & formed well
 - Greater output than lead styphnate
- Successfully made "green" stab mix replacing lead materials with DBX-1
- Optimizing the loading parameters to meet the test standards
- Coated DBX-1 for better flow properties and safer to handle and load

ACKNOWLEDGEMENT

- Thank you to US ARMY RDECOM Environmental Acquisition and Logistics Sustainment Program (Environmental Quality Technology Pollution Prevention) for funding support
- Thank you to PM-JS, ARDEC METC management for their funding support