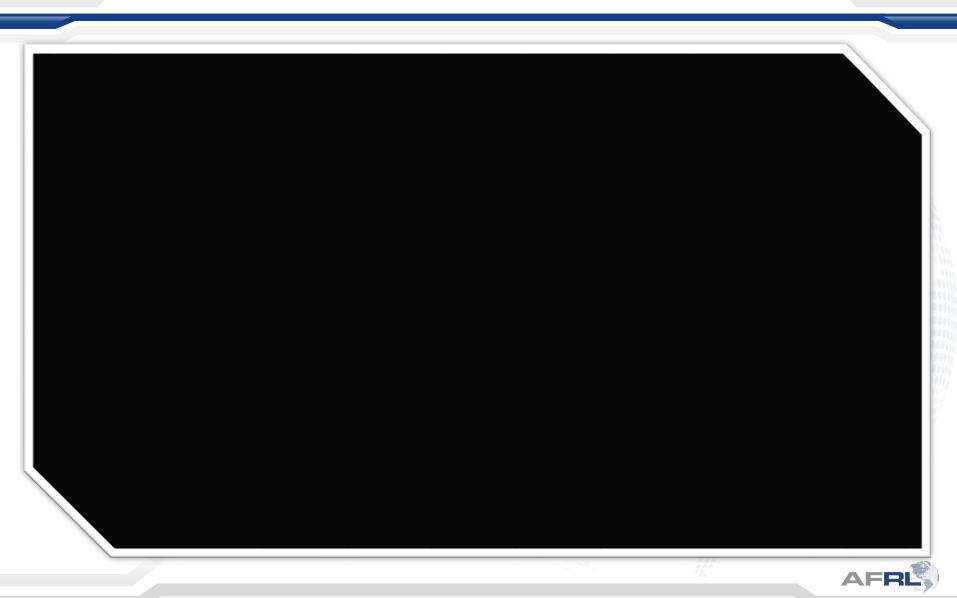


Te

Fuze Science and Technology Overview

2017


George Jolly Ordnance Division AFRL Munitions Directorate

Integrity | Service | Excellence

RW Intro Video

AFRL Mission

Lead the discovery, development, integration, and transition of affordable weapons technology, enabling the warfighter to win across all domains

> Better Buying Power 3.0: Achieving Dominant Capabilities through Technical Excellence and Innovation

AFRL Locations

AFRL Enterprise

Commander Maj Gen Robert McMurry

Executive Director Mr. Douglas Ebersole

Vice Commander Col Evan C. Dertien

Chief Technologist Dr. Morley Stone

- 711th Human Performance
- AF Office of Scientific Research
- Aerospace Systems
- Directed Energy
- Information
- Materials and Manufacturing
- Munitions
- Sensors
- Space

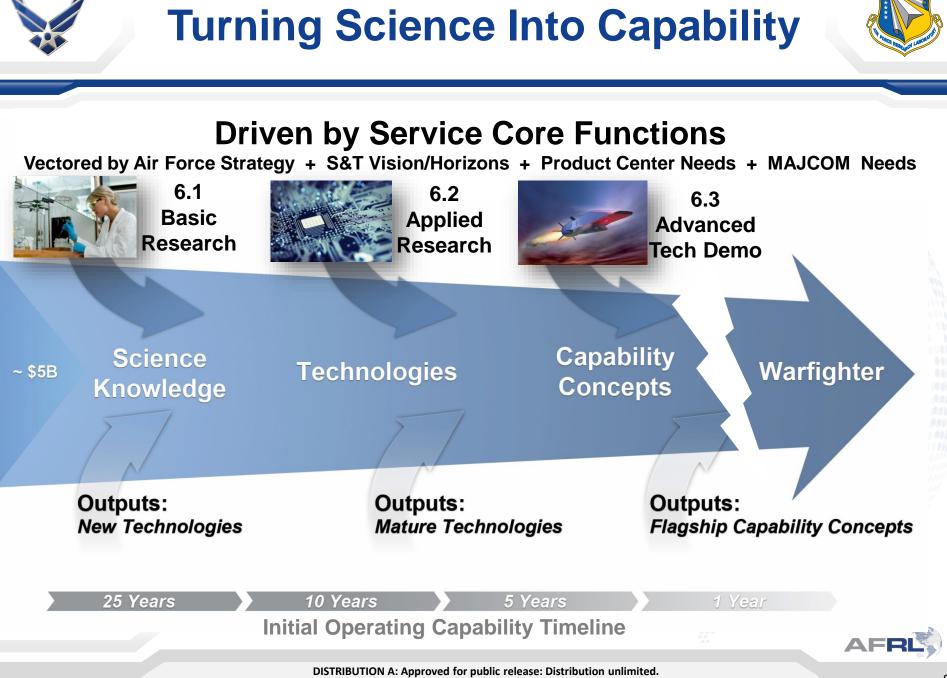
AFRL Weapons Related S&T "The AFRL Weapons S&T Enterprise"

Why is Research Important?

"The first essential of air power necessary for our national security is...

- General Henry "Hap" Arnold

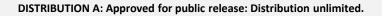
Research"



"...innovation

– fueled by intelligent, creative Airmen – will remain a key part of who we are and what we value as a service."

> "Create the Future or it will be created for you" - General Welsh, CSAF

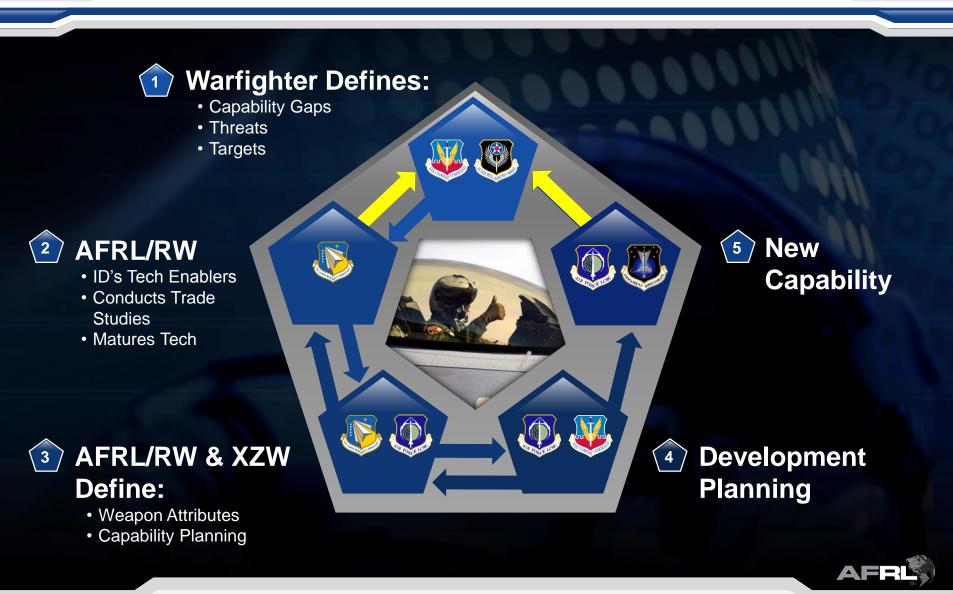


- Effective partnership with industry is critical
 - Academia often have the best understanding of the science and technologies
 - Industry will be the recipient of the science and technology transition
 - Work affordability in Science & Technology phase
- Early, often, and active industry engagement is key
- However, must respect Intellectual Property and Organizational Conflict of Interest concerns

AFRL/RW The Munitions Directorate

RW Leadership

AFRL/RW Effects-Based Strategy

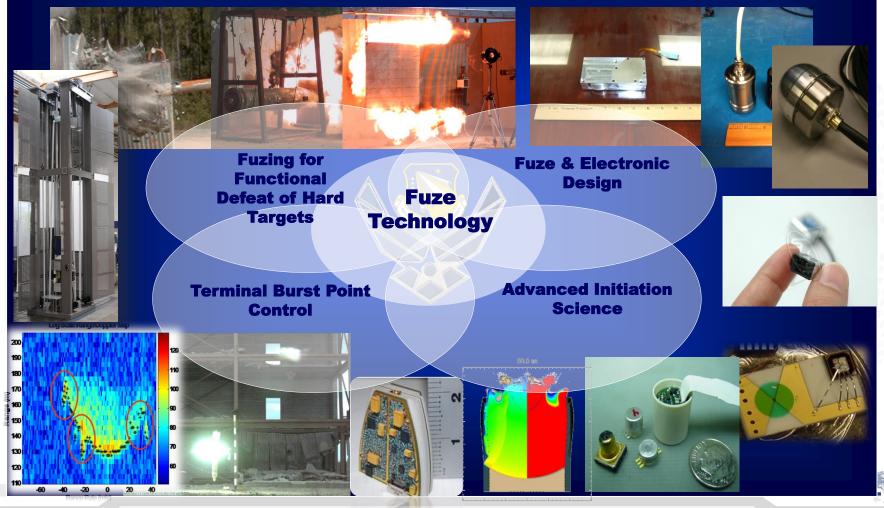


Fully integrated weapons S&T portfolio that exploits both the unique and complementary capabilities of Kinetic and Directed Energy systems in meeting the needs of the US Air Force and the Joint Warfighter

Must leverage the entire AFRL enterprise along with active industry partnerships!!

By Maturing Enabling Technologies Through Core Technical Competencies (CTCs)

New Weapons Concepts Areas (Capability Areas – Core Function Gaps)


DISTRIBUTION A: Approved for public release: Distribution unlimited.

Fuze Research Areas

Lead, Discover, Develop, Integrate, and Transition Science and Technology For Fuzing of Air-Delivered Munitions that Maximize Weapon Effectiveness

Presentations:	
----------------	--

<u>Ob</u> dist des

logi

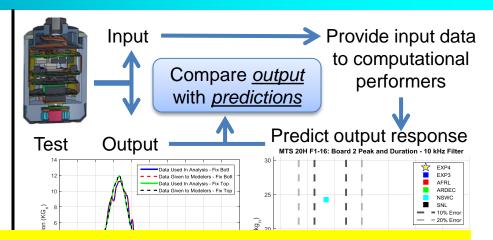
19318 - Proposed Fuze Safety Qualification Procedures for Distributed Embedded Fuzing Systems

19328 - Mechanical Survivability of Embedded Forward Assemblies in High-Pressure and Vibratory Environment

19303 – Mechanical Testing of Embedded Fuze Designs

19352 - Precision Initiation for Next-generation Engagements (PINE)

	TPM	Threshold	
 Issues/Risk: Void/Layer sensing capability in embedded fuzing may not be possible Research may not accurately characterize embedded environment Data recorders may not survive high-speed cannon tests 	Survivability	100% mechanical function after 2500 fps penetration event	f
Internal/External: Internal: RWMF, RWML, RWME, RWMW	Reliability	98% detonation under live-fire tests	1
 <u>External:</u> Sandia National Labs (SNL) National Security Campus (NSC) Armament Research Development & Engineering Center (ARDEC) Reynolds Systems Inc. (RSI) 	Accuracy	Detect void after 2- foot layer & clock accuracy within 98% of programming	C
			_


neration Engagements (PINE)								
	TPM	Threshold	Objective	Current TRL				
	Survivability	100% mechanical function after 2500 fps penetration event	100% mechanical function after 4000 fps penetration event	4/shock testing prototype				
	Reliability	98% detonation under live-fire tests	100% detonation under live fire tests	3/Concept Defined				
	Accuracy	Detect void after 2- foot layer & clock accuracy within 98% of programming	Detect void after 6-inch layer & clock accuracy within 99.9% of programming	2/Concept Defined				
H	for public release: Dist	tribution unlimited.						

12-G-041 (6.3) Fuze Modeling Grand Challenge

Description

- **Technology:** Determine (i.e. benchmark) capability of computational codes to accurately predict the response of fuze components when subjected to a high shock environment
- **Technical Approach:** Quantify the capabilities of a set of computational codes to predict the response of an instrumented fuze subjected to a known high shock input

Presentation:

19317 - Fuze Modeling Grand Challenge: Computational Comparisons

Technical Challenges:

- Ability to accurately test and measure the response of components in instrumented fuzes
- Developing specific parameters for assessing the accuracy of the model
- Repeatability of test method and data

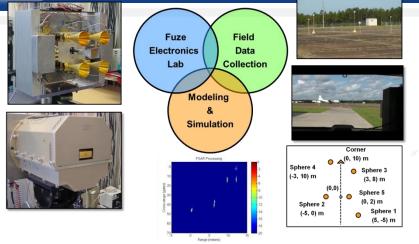
Technical Metric of Success:

 Peak input acceleration within 10% of each other for VHG machine and drop tower tests conducted on instrumented fuze

Schedule	FY12	FY13	FY14	FY15	FY16	FY17
Develop Test Article						
Test Article 2 Predictions						
Test Article 3 Predictions						
Cannon Test Predictions						
Report Documenting Best Practices						

* Application of codes are at TRL 6

Distribution A: Approved for Public Release; distribution unlimited.


Distribution A: Approved for Public Release; distribution unlimited 96TW-2015-0100

Advanced Fuze Sensor Algorithms

Objectives: Investigate forward looking active imaging fuze se Presentation:

	FY 13	FY 14	FY 15	FY 16	FY 17	FY 18	FY 19
Imaging Fuze Testpad Construction							
Dynamic Test Vehicle Acquisition							
Instrumentation Integration & Calibration				Ν			
Simulations & Alg. Dev.					þ		
Field Data Collection							
Real-time demo				333			

19266 - Imaging fuze experimentation for weapon terminal burstpoint control

optimum tuzing for every weapon/target encounter

Critical enabler for electrically aimed mass focused warheads

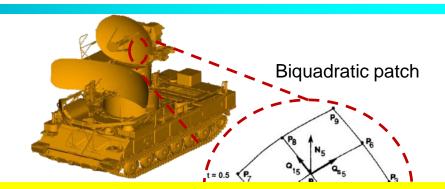
<u>Issues/Risk:</u>

- Algorithms have only been successfully evaluated with computer simulation
- · Need field test data with truth to prove feasibility

Internal/External: In-house project / SBIR Phase II supporting (Technology Service Corp.)

- Target centroiding algorithms (follow-on in RWMF)

Technical Performance Measures								
Metric	Threshold	Objective	Current TRL	Rationale				
Range Focusing Uncertainty	<1 m	<0.5 m	3	Simulation				
Angular Uncertainty	<4 degrees	< 2 degrees	3	Simulation				
Convergence on Target Aimpoint	>25 m	>50 m	3	Simulation				


As of Date: 07302015

16-G-013 (6.2) Maturation of Fuze Radar Simulation Software

Description

- **Technology** Fast radar signature simulation tool for complex targets. Speed enables iterative design of fuze sensor algorithms.
- **Technical Approach** Validate with field data, install and optimize on graphical processor unit (GPU) cluster.

Presentation:

19267 - Fast Synthetic Scene Generation for Fuze Sensor Development

Technical Challenges/Metrics

Technical Challenge:

- Development of high-resolution non-faceted CAD models of complex targets to support rigorous experimental validation.
- Optimization of cluster code for improved GPU speedup.

Technical Metrics of Success:

- Imaged scatterer position error obtained after applying simulated data to fuze sensor algorithm (<4 degrees az & el, 1 m range).
- Speedup between GPU and central processing unit (CPU) computing (~5x)

Schedule	FY15	FY16	FY17	FY18	FY19
SBIR enhancement work		3			
Expansion to GPU cluster					
CAD model creation					
Experimental validation					
Software update				5	

VOI. 27, INO. 5, (1991)

14-G-004 (6.2) Repackaging Penetrator Fireset Components for Enhanced Reliability and Survivability

Description

- **Technology:** Develop packaging technologies for a fuze fireset to improve the survivability and reliability during a high shock environment
- **Technical Approach:** Encapsulant-free design using Additive Manufacturing (AM) and low inductance part-on-part design architecture
- Candidate Packaging Schemes Description of AM Fireset Supports Fireset Packaging

Presentation:

19368 - Shock Testing of 3D printed multi-material circuits

Technical Challenges:

• Functionality and high reliability in extreme shock environments

Technical Metrics of Success:

- Reduce the strain in an unpotted circuit board by an order of magnitude
- Maintain equivalent survivability of a state-of-the-art potted fire set utilizing AM techniques & materials

Schedule	FY14	FY15	FY	′16	FY17	FY18
Dsgn, Fab & Eval Repackaging Schemes	2					
Dsgn, Fab & Demo of HyperFireset						
Dsgn & Optimization of Printed Supports						
Syst Demo in High Shock Environment						4
Dsgn Rules and Recommendations						

Legacy of War-Winning Technology Development

Early Flight	Space Age	Modern Flight	Cyber Domain	Future

Distribution A: Approved for Public Release; distribution unlimited 96TW-2015-0252