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m Lagrangian finite-element codes are industry standard for

analysis of wave propagation
o EXplicit time integration by central differences

e First-order elements

o Computations often can'’t resolve high-frequency modes,
resulting in spurious oscillations (Gibbs’ phenomenon)

e Atrtificial viscosity damps oscillations and high-frequency modes

m Objective is to improve the accuracy of Lagrangian

computations of wave propagation
e Systematic survey of numerical methods uncovered advantages

of higher-order ( > 2"d order) elements
e Higher-Order elements formulated and added to the EPIC code
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m Higher-order elements used successfully for years in CFD

m Higher-order elements not used for solid mechanics because:
o Computational efficiency of explicit schemes historically equated
to minimizing the floating-point operations (FLOPS) in evaluation

of internal-force term, and FLOPs increase with element order.

o Greater complexity of curved-surface contact algorithms

e Decades of research invested in various formulaic tradeoffs
between locking and zero-energy modes of first-order elements

e Mass lumping of 2"d-order serendipity elements yields vertex
nodes with zero or negative:

» Masses
+» Nodal forces due to uniform external traction
e Lack of meshing and visualization software for higher orders
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Square copper rod impacting a rigid surface at 200 m/s

A
|

plastic
strain

2.1

\
\

\
\

\
T

\

<<<<<

1.7
1.3
0.9
0.5
0.1

order-2 hexahedra

s

\\\\\\\\\\\\\\‘.

order-3 hexahedra

W .
O O W

\
| T

\
\

Y

order-4 hexahedra



plastic work (J)

Finite-deformation plasticity
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Wave propagation in 2-D axisymmetry @’
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Wave propagation in 2-D axisymmetry@’
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Wave propagation in 2-D axisymmetry @’
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Velocities of node in base at equal mesh refinement

node velocity (m/s)
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Velocities of node in base at equal mesh refinement
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Velocities of node in base at equal mesh refinement

5 -
+F
w 3
E i
2 2f
T B
2 |
S i
> 1
w -
'g i
c 0F
| ——— exact
-1 F ——— order =20 (1x)
- ———— order =1 (20x)
_2 i L L I l 1 1 L l L Il Il
4 6 8 10 12

time (mcs) 13



Wave propagation in 2-D axisymmetry @’

SOUTHWEST RESEARCH INSTITUTE

Summary of errors at node in base (0 -12 pus)

normalized L1 error in velocity
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order quads

5#
E order =20
4 - first-order quads (7x)
» 3F
— =
E i
~ —
= 2F
o i
2 -
[ [
> T r
w -
3 -
c 0F
s
_2_JlIllllllllJlJlJlJlIllLlllLlJlllJl

30 40 50 60 70 80 90 100

time (mcs) 23



Wave propagation in 2-D axisymmetry
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order quads
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Wave propagation in 2-D axisymmetry
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Convergence of top-node velocity with refinement of first-order quads
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Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry @’
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Convergence of top-node velocity with refinement of first-order triangles
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Convergence of top-node velocity with refinement of first-order triangles
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Convergence of top-node velocity with refinement of first-order triangles
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Convergence of top-node velocity with refinement of first-order triangles
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Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry
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Convergence of top-node velocity with refinement of first-order triangles
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Comparison of velocity convergence with order and refinement
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Comparison of velocity convergence with order and refinement
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Comparison of velocity convergence with order and refinement
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Comparison of velocity convergence with order and refinement
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Wave propagation in 2-D axisymmetry
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Summary of errors in velocity at node near top
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Summary of errors in velocity at node near top
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Summary of errors in velocity at node near top

normalized L1 error in velocity (1)
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Comparison of 2-D and 3-D node velocities
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Wave propagation in 3D
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Convergence of top-node velocity with element order
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Convergence of top-node velocity with element order
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Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes

5 =
E order =7

4 first-order hexes (4x)
B |

S

2
il

node velocity (m/s)

—
IIIIITIII

U

_2JlllllllllJlJlJlJlIllLllltlJlllJl
30 40 50 60 70 80 90 100

time (mcs) 49



Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes
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Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes

5 -
i order =7

4 - first-order hexes (10x)
0 3 F
—_— -
£ i
v -
2 2F
o -
2 |
Q [
> 1T
S -
e

1

_2 _J | | l | | l | I l | | | | I | | || l | | l | ] |

30 40 50 60 70 80 90 100

time (mcs) 52



Wave propagation in 3D @’

SOUTHWEST RESEARCH INSTITUTE

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D
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Convergence of top-node velocity with refinement of first-order hexes
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Comparison of convergence with order and refinement
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Comparison of convergence with order and refinement

5
order=7
4 order =4
first-order hexes (4x)
3 -
2 -
|

node velocity (m/s)

time (mcs) 57



Wave propagation in 3D
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Comparison of convergence with order and refinement
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Wave propagation in 3D
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Summary of velocity errors at monitored node
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Wave propagation in 3D
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Summary of velocity errors at monitored node

normalized L1 error in velocity (1)
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Wave propagation in 3D
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Summary of velocity errors at monitored node

10

——s—— higher-order elements
——=—— first-order hexes

normalized L1 error in velocity (1)

N
LI B A I O

(1) Errors relative to
, data from 7t-
N order elements
0 2 4 6 8 10 12

fort = 0-100 ps

memory (GB) 61



Summary and conclusions @’

SOUTHWEST RESEARCH INSTITUTE

Analysis of wave propagation is essential to fuze design

1D, 2D and 3D higher-order elements have been formulated
and implemented in EPIC

The higher-order elements show no signs of volumetric locking

Accuracy of higher-order elements is compared to standard
first-order elements in simulations of wave propagation.

Higher-order elements provide much greater accuracy at equal:
e Mesh refinement

o Computing time
o Allocated memory
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