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Background

 Lagrangian finite-element codes are industry standard for 

analysis of wave propagation

 Explicit time integration by central differences

 First-order elements

 Computations often can’t resolve high-frequency modes, 

resulting in spurious oscillations (Gibbs’ phenomenon)

 Artificial viscosity damps oscillations and high-frequency modes

 Objective is to improve the accuracy of Lagrangian 

computations of wave propagation

 Systematic survey of numerical methods uncovered advantages 

of higher-order ( > 2nd order) elements

 Higher-Order elements formulated and added to the EPIC code
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Background

 Higher-order elements used successfully for years in CFD

 Higher-order elements not used for solid mechanics because:

 Computational efficiency of explicit schemes historically equated 

to minimizing the floating-point operations (FLOPS) in evaluation 

of internal-force term, and FLOPs increase with element order.

 Greater complexity of curved-surface contact algorithms

 Decades of research invested in various formulaic tradeoffs 

between locking and zero-energy modes of first-order elements

 Mass lumping of 2nd-order serendipity elements yields vertex 

nodes with zero or negative:

 Masses

 Nodal forces due to uniform external traction

 Lack of meshing and visualization software for higher orders
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Finite-deformation plasticity
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Finite-deformation plasticity
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Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry
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Velocities of node in base at equal mesh refinement

Wave propagation in 2-D axisymmetry
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Velocities of node in base at equal mesh refinement

Wave propagation in 2-D axisymmetry
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Velocities of node in base at equal mesh refinement

Wave propagation in 2-D axisymmetry
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Summary of errors at node in base (0 -12 µs)
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Convergence of top-node velocity with element order

Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with element order
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with element order
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with element order
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with element order
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order quads
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order quads
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order quads
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Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order quads
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Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Convergence of top-node velocity with refinement of first-order triangles
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Wave propagation in 2-D axisymmetry

Comparison of velocity convergence with order and refinement
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Wave propagation in 2-D axisymmetry

Comparison of velocity convergence with order and refinement
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Wave propagation in 2-D axisymmetry

Comparison of velocity convergence with order and refinement
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Wave propagation in 2-D axisymmetry

Comparison of velocity convergence with order and refinement
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Summary of errors in velocity at node near top
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Summary of errors in velocity at node near top
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Comparison of 2-D and 3-D node velocities

Wave propagation in 3D
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Convergence of top-node velocity with element order

Wave propagation in 3D
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Wave propagation in 3D

Convergence of top-node velocity with element order
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Wave propagation in 3D

Convergence of top-node velocity with element order
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Wave propagation in 3D

Convergence of top-node velocity with element order
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D

Convergence of top-node velocity with refinement of first-order hexes
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Wave propagation in 3D
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Comparison of convergence with order and refinement

Wave propagation in 3D
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Wave propagation in 3D

Comparison of convergence with order and refinement
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Wave propagation in 3D

Comparison of convergence with order and refinement
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Summary of velocity errors at monitored node

order = 3
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Summary of velocity errors at monitored node
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Summary and conclusions

 Analysis of wave propagation is essential to fuze design

 1D, 2D and 3D higher-order elements have been formulated 

and implemented in EPIC

 The higher-order elements show no signs of volumetric locking

 Accuracy of higher-order elements is compared to standard 

first-order elements in simulations of wave propagation.  

Higher-order elements provide much greater accuracy at equal:

 Mesh refinement

 Computing time

 Allocated memory
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