KC-46 Program ESOH Team Wins SECDEF Environmental Excellence in Weapon Systems in Acquisition Award

John Stallings
AFLCMC/WKC

Delivering an advanced, multi-mission tanker on-time, on-cost ... ready for war on day one!
KC-46 First Flight – 25 Sep 15

KC-46 is implementing ESOH and engineering processes across the life cycle that meet or exceed requirements set by DoD and AF guidance including Cr6+ minimization, halon replacement, noise reduction, emissions reduction, and HAZMAT minimization, tracking, demilitarization, disposal planning.
Areas Covered

- Background and program description
- Early KC-X: Systems Engineering Integration
- Incorporating ESOH Integration into Systems Engineering
 - Using JCIDS for early identification of user ESOH requirements
 - ESOH requirements in solicitation, contract and planning documents
 - Establishing energy efficiency requirements
 - Supporting NEPA Analyses
- ESOH risk management
- HAZMAT management and pollution prevention
 - Comprehensive life cycle HAZMAT Identification and tracking
 - P2 successes
- Internal execution and documentation
- External coordination of ESOH risk management
- Summary of accomplishments
Background and Program Description

- KC-46 Pegasus is starting replacement of aging tanker fleet
- Commercial derivative aircraft based on Boeing 767-200
 - First 18 tankers by 2018
 - $52B contract delivers 179 tankers by 2027
- Missions
 - Air refueling for AF, Navy and Marine Corp
 - Cargo/passenger transport
 - Aeromedical evacuation
- ESOH included early in KC-X Systems Engineering
 - Safety and environmental engineer assigned in Jan 06
 - Worked directly with chief engineer prior to source selection
 - Provided ESOH guidance for CDD, (SRD), and RFP
 - Set Framework for ESOH risk minimization effort
ESOH Risk Management Approach

- Early KC-X system engineering integration efforts
 - Safety and environmental engineers were assigned to sys eng IPT
 - Worked directly with KC-X Chief Engineer beginning in Jan 2006
 - Provided input to CDD, SRD and RFP
 - Set framework for current ESOH risk minimization effort

- Current KC-46A EXOH Risk Management Approach
 - Contract was awarded to Boeing Defense Systems in Feb 2011
 - ESOH and system safety located in system engineering in Development IPT
 - KC-46A Program office established cross functional government/contractor ESOH WG
 - Meets weekly
 - Face-to-face meetings two to four times/yr
 - Groups work identified ESOH hazards, risk assessments and minimization of HAZMATs
The organization chart highlights the integration of the ESOH Team under the Development IPT and the Systems Engineering sub-IPT, as well as the relationship of ESOH to other design considerations.

Delivering an advanced, multi-mission tanker on-time, on-cost … ready for war on day one!
Integration of ESOH started with capability requirements documents

Generated by Joint Capabilities Integration and Development System (JCIDS)

Air Mobility Command 2006 CDD identified specific ESOH risk reduction requirements
 - Eliminate halon in commercial aircraft fire suppression system
 - Meet most restrictive commercial aircraft noise std - FAA Part 36 Stage 4
 - Obtained maximum fuel efficiency with current aviation technology
 - No additional requirements for HAZMATS or/hazardous waste disposal

KC-X Systems Engineering - ESOH management translated CDD into SRD included in RFP and KC-46A contract specifications
 - Halon elimination, noise, and HAZMAT management requirements are specifically included in contract specifications
 - Also included in contract were requirements for use of MIL-STD-882 and NAS 411
 - Specifications also required elimination of Cr6+ coating on OML
 - Minimize use of Cr6+ wherever possible
Integrating ESOH into Systems Engineering Planning Documents

- KC-46A Systems Engineering (SE) Plan - key technical planning document
- Strategy for integration of ESOH into the SE process using MIL-STD-882 methodology is answered by ESOH Team
 - AF PESHE and Boeing System Safety Program Plan define and prescribed strategy for successful ESOH integration into SE process
 - Documents is current and connected (production contract revisions)
- Energy Efficiency Requirements
 - Fuel efficiency requirements included in CDD
 - Converted in specifications - Performance targets (fuel offload vs radius requirements)
 - Targets reduced the amount of fuel required to achieve mission
- NEPA Compliance
 - NEPA Compliance Schedule maintained in the PESHE
 - Part of Milestone C Integrated Master Schedule reviews
 - Data required for NEPA EIS and EAs provided by contract deliverables
ESOH Risk Management

- KC-46 ESO Team implemented an ESOH MIL-STD-882 compliant process (ESOH risk, identification, assessment, mitigation, acceptance and management process)
- Contract clearly specifies how data, assessments, and reports are provided to support the ESOH risk management process
- Weekly tag-up, monthly virtual meetings, semi-annual formal meeting
 - Members include users, AF, AFMC and AFLCMC Safety and Environment Home Offices
 - Members participate in both system engineering technical reviews
 - Program management reviews
- Hold separate cross-functional, senior management level SS
 - Chaired by KC-46 Program Manager
 - Deep-dives into status of ESOH risk and risk acceptance
Life Cycle Cost Savings

- KC-46 Selected Advanced Performance Coating (APC) topcoat
 - Painting/depainting early identified with significant cost and ESOH risks
 - Multipronged approach used to reduce cost and risk areas
 - Coatings with Cr6+ alternatives with long paint cycles were specified
 - APC topcoat use doubles coating life—cutting coatings and waste by ½
 - Reduces hazardous material use/waste disposal - Cr6+, VOCs

- HAZMAT Management and pollution prevention
 - HAZMAT identified embedded in system and used in O and M
 - Uses P2 principles to guide product substitution and process engineering to reduce HAZMAT use

- Boeing uses Project Chemical Profiling System to “mine” for HAZMATs
 - Used for Boeing Commercial and Military Aircraft (P-8)
 - Database contain 3.2M rows of HAZMAT data on KC-46A and support equipment
 - Maintenance Manuals - mined for sustainment hazardous consumables
All KC-46A aircraft, including this first aircraft are coated with Advanced Performance Topcoat. Coating provides increased resistance to weathering and cracking resulting in a cost reduction of up to $44M over the fleet service life.
HAZMAT Data and P2 Successes

- HAZMAT databases are maintained for manufacturing, sustainment and SE
 - Data is available to all users and will be maintained for aircraft life
 - Deactivation, Demilitarization and Disposal (D3) Plan prepared
 - Draft prepared for EMD contract with final version in production contract
 - D3 plan provides current tabulation of HAZMAT with safety warnings

- P2 Successes – Halon (Class I ODS) Elimination
 - KC-46A is first commercial aircraft passenger/transport-based aircraft in world to be delivered with FAA-certified non-halon fire control systems
 - Halon has been out of production in much of world since 1993
 - KC-46 ESOH team assessed halon dependence as significant ESOH risk
 - Established halon elimination as a priority at beginning of program
 - Very forward leaning initiative for commercial derivative aircraft
 - Halon elimination required 5 years of intensive work by Boeing and AF
The KC-46A will be the first airliner/transport-type airframe delivered with an FAA-certified non-halon engine and APU fire suppression system.

Delivering an advanced, multi-mission tanker on-time, on-cost … ready for war on day one!
Minimizing use of Hexavalent Chromium (Cr$_{6}^{+}$)

KC46 ESOH team early during SRD review in 2006 KC-46 assessed Cr$_{6}^{+}$ dependence

Hazard was assessed as catastrophic even though risk could be mitigated to medium (engineering controls and PPE)

Therefore Cr$_{6}^{+}$ elimination minimization was as a priority at beginning of program

DoD published 8 Apr 09 policy, *Minimizing the use of Cr$_{6}^{+}$*

KC-46A contract (24 Feb 11) established multiple requirements for Cr$_{6}^{+}$
 - Eliminate Cr$_{6}^{+}$ in Outer Moldline of aircraft (not fully achieved)
 - Minimize/eliminate Cr$_{6}^{+}$ throughout remainder of KC-46

Forward-leaning initiative for commercial-derivative aircraft

Continuing outdoor exposure testing of 7 non-Cr$_{6}^{+}$ with high potential to meet OML coating standard

High potential for integration on full rate production aircraft.
Outdoor Exposure Test for KC-46A Non-Cr6+ Coating Systems

Shown above are outdoor exposure test coupons for seven non-Cr6+ external surface paint systems set for long exposure tests. Tests are conducted under high humidity, rainfall, and salt conditions in Daytona, FL.
Design for Environment, Internal Execution and Documentation

- Boeing *Design for Environment* practices as part of the HMMP Plan are embedded across the aircraft lifecycle
 - Includes efforts to evaluate consumable replacements used in manufacturing and maintenance
 - Includes both the 767 and KC-46A
 - Special emphasis on toxic chemicals, Cr6+, and cadmium reduction

- Internal Execution

- ESOH effort is comprehensively integrated into KC-46A program documentation from requirements, contract documents to deliverables

- Boeing shares data with AF using a Integrated Digital Environment (IDE)

- Contract required Hazard Tracking System (HTS) is part of the IDE

- HTS is key enabler of the ESOH risk management as repository for assessments, mitigation, elimination, verification and acceptance status

- ESOH Team manages and tracks 460 ESOH risks including areas of HAZMAT, occupational health and airworthiness
External Coordination of ESOH Risk Management

- KC-46A ESOH coordinates its ESOH risk management activities and outcomes with external stakeholders
 - KC-46A users are integral part of ESOH risk management process
 - FAA Fire Safety Branch and US AFRL Coatings Technology Office were key external technical collaborators
 - Lessons learned from FAA certification of first transport-type non-halon fire suppression systems are unique and potentially transferable to other commercial aircraft
 - The use of requirement for non-Cr6+ coating system using APC has been presented at various aviation industry, coatings technology and ESOH forum
- KC-10 and KC-135 plan to use the APC and non-Cr6+ external coating system when fully qualified

Delivering an advanced, multi-mission tanker on-time, on-cost ... ready for war on day one!
Summary of Accomplishments

- Delivering the 1st commercial transport based aircraft in world with an FAA-certified non-halon fire suppression system
- Meets FAA Part 36, Stage 4 Far Field Noise Limits – most restrictive commercial limit – quieter than the C-17
- Meets FAA Part 34 commercial aircraft air contaminant emission limits – most restrictive levels
- Incorporates Cr6+ reduction as top priority for system – includes contract requirement for non-Cr6+ coating system for external surfaces of aircraft (primary source for Cr6+ generation during sustainment)
- Comprehensive data for HAZMAT embedded in KC-46A aircraft and used for sustainment
 - Provides basis for ESOH risk management through life cycle
 - Ensures safe demilitarization at end of life
Key Capabilities - **ESOH**

AFLMC... Providing the Warfighter's Edge

Self Protection
- Electromagnetic Pulse hardening
- Chemical / Biological operations
- LAIRCM & Radar Warning Receiver
- Cockpit armor

Multi-role Capabilities
- Air Refueling, cargo, passengers, patients
- Roll-On Beyond-Line-of-Sight (ROBE) capability

Digital Glass Cockpit

Aerial Refueling Operator Station

Engine Nacelle FS – non ODS

P & W Engines

- 62K Thrust
- Meets Stage 4 Noise std
- Meets Part 34 air emission stds

Up to 54 Aeromedical Evacuation Patients

Up to 58 Passengers (114 for Contingency Operations)

1,200 gpm Refueling Receptacle

463L Pallets

400 gpm Centerline Drogue System

400 gpm Wing Air Refueling Pods

APU FS – non ODS

Non Chrome Outer Moldline Coating System

1,200 gpm Modernized fly-by-wire KC-10 Boom

High Resolution Stereoscopic Camera System

Aft Door

Overwing Hatch

Main Cargo Door

Additional Crew Seats (8)

Galley

Crew Bunks

Up to 18

Up to 54 Aeromedical Evacuation Patients

Aircraft Equipment Storage

Delivering an advanced, multi-mission tanker on-time, on-cost … ready for war on day one!
AFLCMC… Providing the Warfighter’s Edge

Delivering an advanced, multi-mission tanker on-time, on-cost … ready for war on day one!