Mission Aware Cybersecurity

Cody Fleming (UVA)
Scott Lucero (OSD)

Peter Beling, Barry Horowitz (UVA), Calk Elks (VCU)

October 2016
Systems Engineering Research Center (SERC) Overview

• DoD and the Intelligence Community established the SERC University Affiliated Research Center (UARC) in September 2008
 – Long term, strategic relationship for systems engineering research
 • Free from organizational conflicts of interest
 – Vision: “The networked national resource to further systems research and its impact on issues of national and global significance.”
 – Five year contract with Stevens Institute and 22 collaborating universities renewed in September 2013

• ASD(R&E) and the Intelligence Community are the original sponsors
 – Defense Acquisition University, Army, Navy and Marine Corps now also sponsor research

• SERC awarded more than $55M for systems engineering research
 – $5M core funding for Engineering Science and Technology, starting in FY14
 – Research organized in four thrusts
 • SE Transformation, Trusted Systems, SoS, Human Capital
Mission Aware Cybersecurity

- Understanding the Consequences of attacks to Mission integrity
- Multidisciplinary modeling
- Systems of System Perspective
- Model Driven Approach to Vulnerability/Consequence Assessment

Human/System Interface

Mission Context

Security / Vulnerability Modeling Methods

Critical Assets

Detection and Mitigation Strategies to Protect Critical Assets

System of Systems Perspective
Mission Aware Cybersecurity: An Approach to Resiliency for Physical Systems (1 of 2)

- Response to attacks that penetrate network and perimeter security defenses
- Also insider and supply chain attacks
- Application domains:
 - Weapon Systems
 - C2 Systems
 - Sensor Systems
 - Logistics Systems
 - Computer Controlled Physical Systems (Engines, Electrical Power, Rudder Control)
 - Etc.
Mission Aware Cybersecurity: An Approach to Resiliency for Cyber Physical Systems (2 of 2)

• Securely monitor physical systems for illogical control system behaviors (Secure Sentinel technology)
• For detected attacks:
 – Inform system operators
 – When possible, provide decision support for reconfiguration

• Developed, and currently developing, a number of prototype solutions including evaluations of responses to cyber attacks during system operation
 – UAV Surveillance system (DoD)
 – 3D Printer (NIST)
 – State Police cars (Virginia)

 – Radar(DoD)
 – Tank Fire Control System(Picatinny Arsenal)
 – Navy Ship (SBIR Partnership)

Completed Efforts

Started Efforts
Illustrative Examples of Illogical Control

• Navigation waypoint changed, but no corresponding communication received by UAV
• Automobile sensor shows distance between cars reducing, but collision avoidance control system speeds up the following car
• Selected material to create part of a 3D printed object does not match what the executing design calls for
• Mode of Fire Control System changed, but no touch screen input from operator
A Set of Techniques Utilized in System-Aware Security

Cyber Security
* Data Provenance
* Moving Target
 (Virtual Control for Hopping)
* Forensics

Fault-Tolerance
* Diverse Redundancy
 (DoS, Automated Restoral)
* Redundant Component Voting
 (Data Integrity, Restoral)

Automatic Control
* Physical Control for Configuration Hopping
 (Moving Target, Restoral)
* State Estimation Techniques
 (Data Integrity)
* System Identification
 (Data Integrity, Restoral)

This combination of solutions requires adversaries to:

• Understand the details of how the targeted systems actually work
• Develop synchronized, distributed exploits consistent with how the attacked system actually works
• Corrupt multiple supply chains
High Level Architectural Overview

System to be Protected + Diverse Redundancy

Sentinel Providing System-Aware Security

Internal Controls

Outputs

Reconfiguration Controls

Internal Measurements

Super Secure
Architectural Assessment & Selection Process

• Identify Relationships between sub-systems, functions and variables
 What is critical to protect?
• Recognize the Possible Paths an Attacker Could Take to Exploit critical sub-systems.
 What are the opportunities for and consequences of attacks?
• Determine the Subset of Attack Actions Most Desirable to an Attacker.
 What is exploitable and by whom?
• Identify appropriate defensive actions and their impacts on the attacker
 Pre-selection of cyber defenses
• Evaluate the impacts of the selected cyber-defensive actions on the system.
 What does this cost me and can I afford it?
• Weigh the Security Trade-offs to Determine Which Architectural Solutions
 Best Reverse the Asymmetry of a Potential Attack.
 Effectiveness of best solutions
Modeling Tools for Accuracy at Scale

• **Systems Models** to capture the relationships between functional system entities and to recognize patterns (data, dependence, control) within the system.

 – Be able to represent the system attack surface (danger of under modeling).
 – Represent the initial system “as-is” with minimal defense and again with possible security solutions implemented.
 – Value in showing solutions integrated into the holistic system for context.
 – Used to model an understanding of the complexity added to an attack by particular defenses.
 – Initial approach used influence diagrams. Currently developing a suite of tools in SysML.

• **Attack Trees** to identify possible paths an attacker could take to exploit the system.

 – Uses assessments of the attack actions and the attackers’ capabilities to determine the subset of most preferable actions.
Outcomes and Objectives from Initial Studies

• Need methods to support information gathering from operational community and semi-automatically convert into SysML models

• More systematic methods for accounting for historical attack information in the vulnerability assessment process
Towards Automation Support for Vulnerability Assessment

• Expressing mission requirements in terms of low level requirement properties (e.g. platform security properties)
• Gathering pertinent threat and historical attack information (special databases, CAPEC)
• Finding attack patterns that are potentially “productive” against our system ... Difficult search problem
From Mission Requirements to Systems Models & Properties

Mission Domain – What are all of these integrated systems trying to achieve for us?

Functional Domain – How do we describe operational and function behavior, input/output, state interactions – accurately

Architecture Domain – How are all of the Platforms/sub-systems organized, connected, and related to each other to achieve mission objectives

Platform Domain – What are the Platform functions providing or requiring in the context of mission

- Support decision making by providing model based reasoning along these dimensions
- Provide a models to collect insight that otherwise could be overlooked
- Integrate Exploit Tools (Attack Trees) to the framework
- Be able to access the criticality of platforms and functions with respect to mission
- Evaluate cyber-defenses
Mission Aware Tool Framework

Tool based Paradigm

Mission and System Models
- Security Goals
- Mission and System requirements

Workflow Descriptions

SysML Models
- System Description
- Hierarchical relationships

XMI
- Extraction of model information

GraphML
- Meta Model (attack surface surrogate)

Attacks models and composition
- Mission Specific
- Attack Pattern Library
- Attack Chains
- Composibility Tool
 - Attack tree
 - Custom

Analysis
- Evolutionary Assessment Tool
- Visualization

Support exploration – Diverse Analysis
- Separation of concerns – analysis vs modeling
- Low threshold – easy entry
- High Ceiling – can be used by experts
- Open Ecosystem support – Use community supported tools, languages

Empirical Data (?)

Other Analysis Methods
- Graph theoretic approaches
- Etc.
Outlook

• Continue development of architectural selection tools

• Case studies with military partners
 – Design of defensive architecture
 – Implementation of attacks and defenses

• Trust and systems operations
 – Sentinels or operators take control if trust in system is lost
 – Tradeoff between risk and mission capability