

59th Annual NDIA Fuze Conference

Selecting and Specifying Lithium Batteries for Advanced Fuzing Systems

Charleston Marriott, Charleston, SC

May 3-5, 2016

Paul F. Schisselbauer EnerSys Advanced Systems, Power Sources Center 104 Rock Road Horsham, PA 19044

Tel: (215) 773-5416 Fax: (215) 773-5444

E-mail: Paul.Schisselbauer@enersys.com

Monica V. Stoka EnerSys Advanced Systems, Power Sources Center 104 Rock Road Horsham, PA 19044

Tel: (215) 773-5423 Fax: (215) 773-5499

E-mail: Monica.Stoka@enersys.com

Agenda

- General Selection Criteria
 - Specifying Requirements
 - Environmental Considerations
- Electrochemistry
 - Suitability
 - Power Versus Energy
- Battery Configurations
 - Configurations
 - Benefits & Limitations
- Common Battery Types
 - Thermal Batteries
 - Ambient Temperature Batteries
 - Secondary/Rechargeable Batteries
- Summary

General Selection Criteria

- Specifying Requirements
 - Voltage
 - Current
 - Activation Time
 - Operational Life
 - Capacity
 - Temperature Range
 - Size
 - Weight
 - Polarity

F-15 drops JDAM-equipped bombs in Afghanistan.

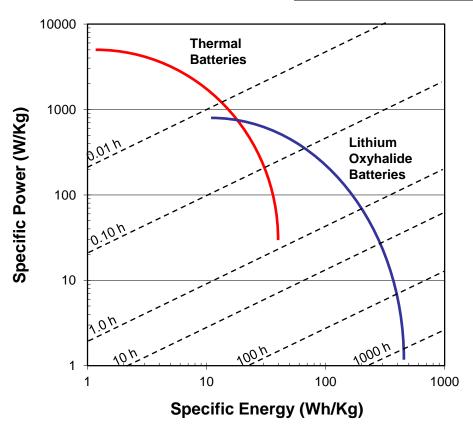
(U.S. Air Force photo by Staff Sgt. Michael B. Keller)

LiSi/FeS₂ Thermal Battery (Device No. G3190B2)

General Selection Criteria

- Environmental Considerations
 - Launch Acceleration
 - Shock
 - Vibration
 - Spin
 - Temperature Range

LiSi/FeS₂ Thermal Battery (Device No. G3200A1)



Artillery Fuzing
155 mm Projectile

Electrochemistry

Ragone Plot Comparing Thermal Batteries to Lithium Oxyhalide Batteries.

(Approximate data - plot for illustration purposes only)

- Certain battery systems are ideally suited to military applications.
 - Cold Operating Temp.
 - Long Shelf Life.
- Lithium Oxyhalide Batteries are best suited to applications that require extended life.
 - Lithium/Thionyl Chloride
 - Lithium/Sulfuryl Chloride
 - Lithium/Sulfur Dioxide
- Thermal Batteries are best suited to applications that require high power.
 - Lithium Silicon/Iron Disulfide
 - Lithium Silicon/Cobalt Disulfide

Battery Configurations

Active Primary

Ready for discharge

Reserve Primary

 Can be activated on demand or by the conditions of deployment using one or more of the following methods:

Activation Method	Initiated By	
Electric primer	Electrical pulse	
Percussion primer	Firing pin or lanyard	
Stab initiated	Squib or thumb screw	
G-activation	Launch acceleration or target impact	

Batteries can be activated within milliseconds to seconds.

Secondary

Rechargeable batteries with, and without, Battery Management Systems (BMS)

Benefits & Limitations

Battery Type	Pros	Cons
Active Primary Lithium	Immediate power & energy.Operating temp. range.	Environmental robustness.Limited shelf life.
Reserve Primary Thermal Batteries Liquid Reserve	20 year shelf life.Operating temp. range.Environmental robustness.	Activation rise time. (ms to sec rise times)
Secondary Lithium Ion	Immediate power & energy.High cycle life.	Environmental robustness.Operating temp. range.Limited shelf life.

Preferred technologies for Advanced Fuzing & Weapon Systems

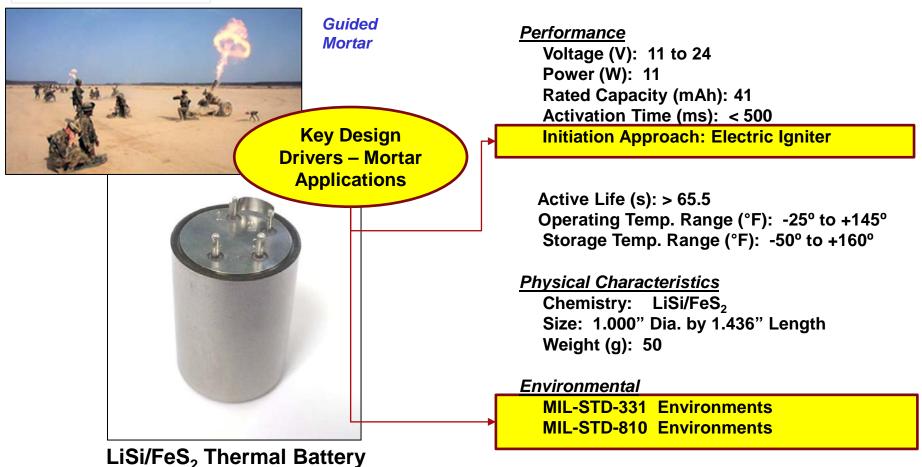
Common Battery Types

AC130 Spectre - 105 mm Projectile

LiSi/FeS₂ Thermal Battery (Device No. G3208A1)

- Thermal Batteries
- Ambient Temperature Batteries
- Secondary/Rechargeable Batteries

Thermal Batteries


LiSi/FeS₂ LiSi/CoS₂

Lithium Thermal Batteries

- Self-contained, hermetic, electrochemical power sources.
- Capable of being stored in excess of 20 years.
- Achieve dormancy by utilizing electrolytes which require elevated temperature to become ionically conductive.
- Provide high current density for high power applications.
- Highly reliable.

The G3202A1 Lithium Silicon/Iron Disulfide Thermal Battery is designed to meet the extreme temperature and performance requirements of mortar applications.

(Device No. G3202A1)

High-speed Anti-Radiation Missile (HARM)

> Key Design Drivers – FTS Applications

Performance

Voltage (V): 24 to 35

Rated Capacity (mAh): 730 Activation Time (ms): < 1000

Initiation Approach: Electric Igniter

Operating Temp. Range (°F): -58° to +178° Storage Temp. Range (°F): -65° to +221°

Physical Characteristics

Chemistry: LiSi/FeS₂

Size: 3.00" Dia. by 3.50" Length

Weight (lbs): 3 Max 11 Pin Terminal Plate

3 Redundant Voltage Connections

Robust Bracket Design

Environmental

MIL-STD-331 Environments
NAVSEA 9310 Lithium Battery Safety
RCC319-10 Battery Requirements

LiSi/FeS₂ FTS Thermal Battery (Device No. G3206A1)

The G3206A1 LiSi/FeS₂ Thermal Battery provides an active life greater than 35 minutes across the full temperature range (-58 °F to +178 °F).

Ambient Temperature Batteries

Active Primary Batteries

- Self-contained, hermetic, electrochemical power sources.
- Capable of being stored in excess of 5 years.
- Highly reliable.
- Minimal thermal management issues.
- Provide high energy density for extended mission times.
- Cost effective in high volume production.

Ambient Temperature Batteries

Li/SOCl₂

Li/SO₂Cl₂

 Li/V_2O_5

Reserve Primary Batteries

- Self-contained, hermetic, electrochemical power sources.
- Capable of being stored in excess of 20 years.
- Achieve dormancy by physically separating the active components, i.e., the lithium foil anode and the electrolyte (catholyte).
- Provide high energy density for extended mission times.
- Highly reliable.
- Minimal thermal management issues.
- Cost effective in production.

G3168B1 Cell Φ.220 x .215

G3201A1 Cell Φ.275 x .325

G3198B1 Cell Ф.319 x .359

G3165D1 Cell Φ.350 x .435

G3207A1 Cell Φ.450 x .395"

G2666B1 Φ.510 x .840

G3147A1 Cell Ф.500 x .840

EnerSys offers a wide range of state-of-the-art Reserve Lithium/Oxyhalide Cells for medium and large caliber projectile fuzing.

M767 Artillery Fuze, 155 mm & 105 mm Projectiles

Key Design
Drivers – Fuzing
Applications

Artillery Fuze Battery (Device No. G3147A1)

Performance

Voltage (V): 2.5 to 3.6

Current (mA): 0.5

Rated Capacity (mAh): 280 Activation Time (s): < 800

Initiation Approach: Stab Initiation

Operating Temp. Range (F): -25° to +160° Storage Temp. Range (F): -60° to +160°

Physical Characteristics

Chemistry: Li/SOCI₂

Size: 0.50" Diameter by 0.84" Length

Weight (g): 6.2

Environmental

MIL-STD-331 Environments

Acceleration (G): 30,000 max.

Spin (RPM): 30,000 max.

The G3147A1 Li/SOCl₂ Artillery Fuze Cell offers high energy in a robust design capable of withstanding the extreme conditions of ballistic launch.

Extended Range Guided Munition (ERGM) 5" Projectile

Key Design
Drivers – Projectile
Applications

Data Hold Battery (Device No. G3177A1)

Performance

Voltage (V): 5.0 to 7.5

Current (mA): 36

Rated Capacity (mAh): 350

Activation Time (s): 2.0

Initiation Approach: Dual Electric Primers

Operating Temp. Range (F): -45° to +110° Storage Temp. Range (F): -65° to +150°

Physical Characteristics

Chemistry: Li/SOCI₂

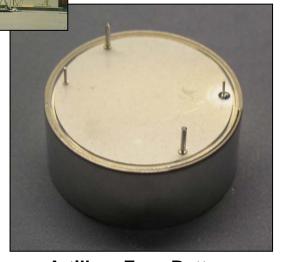
Size: 1.516" Width by 2.40" Length

Weight (g): 80

Environmental

MIL-STD-331 Environments

Acceleration (G): 12,600 max.


The G3177A1 Li/SOCl₂ Data Hold Battery utilizes a 2S2P configuration to support essential data hold functions in guided projectiles.

Key Design
Drivers – Artillery
Applications

Artillery Fuze Battery (Device No. G3158B3)

Performance

Voltage (V): 5.6 to 12.0 Current (mA): 350

Rated Capacity (mAh): 35

Activation Time (s): ≤ 100

Initiation Approach: Setback Initiation

Operating Temp. Range (F): -45° to +145° Storage Temp. Range (F): -60° to +160°

Physical Characteristics

Chemistry: Li/SOCI₂

Size: 1.50" Diameter by 0.67" Length

Weight (g): 71

Environmental

MIL-STD-331 Environments

Acceleration (G): 30,000 max.

Spin (RPM): 30,000 max.

The G3158B3 Li/SOCl₂ Artillery Fuze Battery can sit in the dormant state for in excess of 20 years and then be activated by the conditions of ballistic launch.

Secondary (Rechargeable) Batteries

- Lithium Ion & Lithium Ion Polymer Batteries
 - Robust battery designs for demanding environments.
 - High open circuit voltage.
 - No memory effect.
 - Low self-discharge.

Li-Ion FTS Battery (Device No. G3203B1)

Performance

Voltage (V): 24 to 33.6 Current (A): 5 Discharge

1.0 Charge

Rated Capacity (Ah): 2.8 at 77°F (25 °C)

Internal Heater: Yes

Operating Temp. Range (F):

Charge: 32° to +113°

Discharge: -4° to +160°

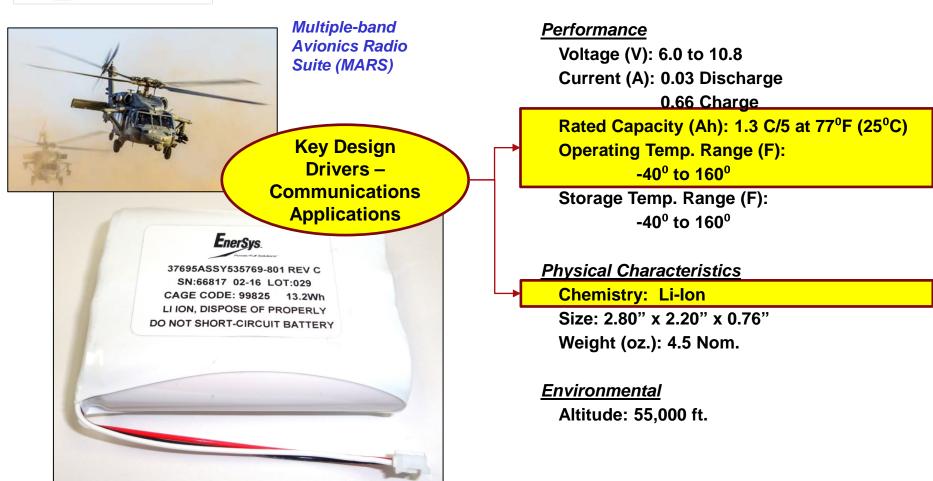
Storage Temp. Range (F): <95°

Physical Characteristics

Chemistry: Li-Ion

Size: 6.26" x 3.56" x 1.34"

Weight (lb.): 2.05


Environmental

RCC319-10 FTS Battery Requirements
NAVSEA 9310 Lithium Battery Safety

The G3203B1 Flight Termination Systems (FTS) Battery uses an 8S1P configuration of standard lithium-ion 18650 cells

Li-Ion Communications Battery

The Communications Battery uses an 3S1P configuration of standard lithium-ion 18650 cells

Summary

- Several battery types/configurations are typically used in advanced fuzing and weapon systems.
- Applications engineers can help in determining:
 - Requirements to specify
 - Suitability of the various battery chemistries for a particular application.

EnerSys provides high energy density "lithium/oxyhalide batteries" and high power density "thermal batteries" as well as secondary "lithium ion batteries".

Thank you for your attention!

