The Design and Test of a new Insensitive Munitions (IM) Booster for the UK Paveway IV Weapon System.

NDIA FUZE CONFERENCE MAY 2016

Laurie Turner – FIMechE, MIET.

Technical Authority for Ordnance Systems

Missile Electronics

Thales(UK)

Unclassified

Ordnance Fuzing Systems World Leader

Background

Synopsis

- > The Paveway IV weapon system uses the Thales Aurora "In-Line" fuze
- The current Aurora Fuze programme was accelerated to meet an Urgent Operational Requirement (UOR)
- To enable this PBXN-5 material was used for the booster with a simple detonator to booster interface
- > This resulted in the current weapon being non-compliant to IM requirements
- > A 2* waiver is in-place, which is scheduled to expire in November 2016
- The Programme requirement was to redesign this booster to meet I/M requirements and remove the waiver
- There were additional requirements to improve survivability and service life for this Fuzing system

Test	Fast heating	Slow heating	Bullets	Fragments	Shaped Charge	Propagation
Requirement	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type III	No worse than Type III
Outcome	Type I (A)	Type I (A)	Type I (A)	Type I (A)	Type I (A)	Type I (A)

I/M Status for Paveway IV with PBXN-5 booster

Unclassified

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

Current Booster Design

Design

Unclassified

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales 2015 All rights reserved.

Current Booster Design

Design

Programme Objectives

Activities for an I/M Booster for the Aurora Fuze

- > Define Options for IM compliant Technologies
 - Design Options
 - Available energetic materials

> Requirements for High "g" Survivable solution

- Variable air gap under high "g" loads
- Mass reduction to improve survivability

> Extended Life – Fuze & Booster

- 300 Hours service life

> Qualification activities

- IM Performance & Safety trials
- Survivability testing
- Takeover Reliability
- Environmental tests
- Compatibility testing

Assumptions

Requirements for Material Selection

- > Qualification & IM Compliance
 - Material to be STANAG 4170 qualified for UK by the time of insertion
 - PBXW-11 STANAG 4170 data available
 - Data assessment conducted by DOSG
 - Additional EMTAP trials required

> Robustness / Survivability

- Material to withstand Hard Target impact forces

> Takeover

- Obtaining material properties has been challenging
 - Material properties of selected W11 material defined by Cranfield
 - Inserted into Thales Hydrocode modelling
 - Modelling indicates a stemming will be required for reliable takeover
- Where shock sensitivity and other material parameters are unavailable, judgements were made based on similarity with known materials

> Retrofittability

- No change to Fuze is a key design driver

THALES

Trade Study Results – Booster Pellet

Potential Materials (For I/M compliant booster) (In order of scoring)

> P16945	Modern NTO Based / Dedicated I/M material Lacking qualification evidence / Shock Sensitivity 2.56GPa
> PBXW-11	In UK & US Service / Proven in Hard Target applications as a Booster / Dedicated I/M material / Shock Sensitivity 1.8GPa
Rowanex 3601 (N7)	In UK Service / Commercial availability issues identified Shock sensitivity 2 Gpa / Expensive
> DPX-2 (N9)	Dedicated IM material / Limited available data for assessment / Shock sensitivity 2GPa
> DPX-1	In UK Service / Dedicated I/M material / Shock sensitivity 3.4GPa / Used as a Main Charge material
> Fox-7/binder	Modern material / Dedicated I/M material / Lacking qualification evidence / Shock sensitivity 3.1GPa

PBXN-7 & PBXN-11 were both equal in measured results

- > The supply and manufacture of PBXN-7 was restricted
- > PBXW-11 was freely available
- > Thales had experience of PBXW-11 in similar hard target applications

PBXW-11 recommended

Trade Study Results - Stemming Materials

Potential Materials (For I/M compliant Stemming)(In order of Scoring)

> PBXW-11

- UK 4170-Qualified / Proven in Hard Target applications
- Good I/M characteristics Existing product = SCO, type V, Drop tests OK, Frag, aging OK
- Shock Sensitivity 1.8GPa

> HNS-II

- Used in existing products (MAFIS) / Structural issues under high "g"
- Good I/M characteristics / Shock sensitivity 1.8GPa
- Small critical diameter good for detonator acceptance

> PBXN-5

- Old material / High sensitive non I/M material
- Shock sensitivity 1.4GPa

PBXW-11 recommended

Recommended Solution

Selected Design solution comprising PBXW-11 Stemming Pellet and PBXW-**11 Booster Pellet** • PROS

IM booster assembled to fuze

- Insensitive Booster Pellet
- •IM capable Stemming
- Retrofittable
- Robust Hard Target Capable
- Lightweight Housing
- •CONS
- A480 furniture would need to be modified to accept two assembled Fuzing Systems (in a horizontal configuration)

Benefits

•This option requires the Fuze and Booster to be assembled together as a single unit which simplifies handling in service

Unclassified

Booster Housing

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

IM Booster Assembly

Qualification

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

Unclassified

Tests & Trials

> Takeover Analysis

- Hydrocode modelling conducted
- Allowance for variable air gap
- Motion under shock loads
- 25 Takeover trials completed successfully
- Det to stemming / Stemming to booster
- Maximum air gap at temp extremes

Unclassified

Tests & Trials

- > High "g" Shock Loads
 - 12 successful Catapult firings
 - Inert boosters

> Environmental Tests

- To current System TRS and STANAG 4157
- Trials completed
 - Boosters under assessment
 - Fuze life assessment
- X Rays at each environmental phase
 - No anomalies found
- Small scale testing in progress
 - Vac Stab & DSC
 - Fofl
 - Rotary Friction
 - Temp of Ignition

Tests & Trials

> Drop Tests

- 1.5 Metre un-packaged fuze
 - One fuze dropped five times
 - Five different orientations
 - No Reaction
 - Passed STANAG 4157 criteria

> 25m Drop Trial – Def Stan 00-35

- Palletised Load of 30 x A480s
- 1 Live makeweight fuze & 1 Live booster
- Placed in 2 x A480 packages
 - 2 x A480s placed in worst case positions
 - Bottom Tier Corners
- Remaining positions filled with ballast items
 - Mass & C of G representative
- Passed No reaction

Tests & Trials

Sympathetic Detonation – Packaged Fuze

- Passed – No reaction

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales 2015 All rights reserved.

Unclassified

Qualification

Tests & Trials

AUR Fast Heating Trial – Un-Packaged Weapon

- Passed – No reaction – Type V

Tests & Trials

- > Compatibility Analysis
- > Water Gap test STANAG 4363
 - Initial test on the current design
 - Significant failure
 - Followed up with new design
 - Passed with a score better than 28 threshold

> Safety Tests

- Additional EMTAP Characterisation tests UK DOSG Sub-Scale Safety Tests
 - 22A Large scale gap test
 - 35 internal ignition test
 - 41 Fast Heating test
 - 42 Electrical Heating
- Full suite of I/M Trials on Packaged fuze

Packaged Fuze with new W11 Booster - IM Status							
Test	Fast heating	Slow heating	Bullets	Fragments	Shaped Charge	Sympathetic Reaction	
Requirement	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type III	No worse than Type III	
Outcome	Type V	Type IV	Type V	Type III	Type 1	Type IV	

a third party

THALES

Unclassified

Final Paveway IV I/M Assessment

Paveway IV with current Aurora fuze - IM Status							
Test	Fast heating	Slow heating	Bullets	Fragments	Shaped Charge	Sympathetic Reaction	
Requirement	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type III	No worse than Type III	
Outcome	Type I (A)	Type I (A)	Type I (A)	Type I (A)	Type I (A)	Type I (A)	

Paveway IV with New W11 Booster - IM Status						
Test	Fast heating	Slow heating	Bullets	Fragments	Shaped Charge	Sympathetic Reaction
Requirement	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type V	No worse than Type III	No worse than Type III
Outcome	Type V	Type IV (A)	Type V (A)	Type V (A)	Type 1 (A)	Type 1 (A)

- The Aurora Fuze is still not fully compliant with the full I/M requirements of STANAG 4439
- The I/M response is a significant improvement over the previous system
- This system is ALARP for a munition of this nature with available technology

THALES

- As Low As Reasonably Possible
- 300 Hours service life proven
- Improved Hard Target Capability Proven