Exceptional service in the national interest

Shock-hardened Penetrator Data Recorder to Support Hard-Target Fuze Development

SAND2016-3004 C

59th Annual NDIA Fuze Conference, Charleston, SC Mike Partridge, Shane Curtis

Advanced Fuzing Technologies Department, Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Acknowledgements

This work was sponsored by B61-12 nuclear safety testing.

Background / Problem Statement

- Measure component-level impact environments for B61-12
 Anomalous Environment (AE) nuclear safety sled track test
 - Four, identical modular recorders comprise entire package
 - 48 total analog channels (12 per module)
 - 24 discrete (on or off detect) channels (6 per module)
- Fit within defined envelope of B61-12...but readily adaptable for most penetrator packages (> 4" in diameter)
- Store energy to record post-impact without external power
- Survive impact and then hold data without power
- Accommodate use for other high-shock data acquisition tasks
- Low-pass filter to avoid aliasing recorded data

"AE Data Recorder"

Strong Pedigree

Sandia 3AMP

- Successfully recorded acceleration of hundreds of penetration events.
- Same packaging techniques employed

Sandia 3DDR-AM

- Similar form factor and functional architecture
 - Multiple data channels
 - Similar sample rate
 - Anti-aliasing low-pass filter
 - Similar power requirements

AE Recorder Design Overview

- Stainless Steel Housing with Potting (not shown here)
- Five total Printed Circuit Boards (PCBs)
 - 3 Analog (identical)
 - 1 Power/Interface
 - 1 Digital
- Three MDM Connectors
 - Top: MDM-31P & MDM-15S
 - Bottom: MDM-15P
- Approximately 1.4 lbs

Before Encapsulation

After Encapsulation

Mechanical Modeling & Simulation

- Goal is to increase likelihood that the design is robust
- Multi-Stage FEA Procedure Captures stress profile of components over entire life cycle

Implicit Quasistatic, Sierra S/M: Adagio

- Cool from Potting Cure
 Temperature to lowest
 operational temperature
- Apply compressive preload to chamfers.

Explicit
Dynamic,
Sierra S/M:
Presto

3. At lowest operational temperature, accelerate module at chamfered surfaces with defined acceleration.

Modeling reveals no flaws with design.

AE Recorder Block Diagram

Design divided into functional sections:

Energy Storage & Power Conversion

- Shock-tolerant capacitor powers recorder post impact
 - Battery is expected to fail at impact
 - Store sufficient energy to complete post-impact recording
 - Temperature affects properties: Capacitance, series resistance (ESR)

Relative 100% Capacitance 60%

- Switch-Mode Power Converter improves energy efficiency
 - Efficiency 75%, compared to 37% for linear regulator
 - Reduces required energy storage

Comparators

- Bi-level inputs for additional data
 - Comparator with programmable voltage threshold
- Spare channels for test-specific purposes
 - Record & trigger (if configured) on spare channels for test scenario flexibility

Signal Conditioning

- Low-pass filter excludes high frequency content
 - Accelerometers output high frequency signals that are not useful
 - Must be sufficiently attenuated at sampling frequency
 - Phase compensation avoids time correlation problems
- AE Recorder has programmable gain and balance
 - Adjustable gain to match accelerometer's wide sensitivity variation
 - Balance to compensate for offset
 - Allows replaceable accelerometers and test-specific changes

Image source: www.wikipedia.org

Sensor Excitation Voltage

- Using 5V accelerometer excitation voltage
 - Reduces power consumption over 10V operation
 - Calibration at 5V is routinely available
- Each Analog board has separate 5V regulator
 - Processing for four sensors per analog board
 - Employ current limit on excitation to mitigate shorted sensor
 - On/off control removes Analog & sensor power during sleep mode, conserving power

Image source: www.endevco.com

Microprocessor & Logic Combined

Combination reduces board area, complexity

- Microprocessor implements high-level control and configuration
- Logic handles high-speed data movement from ADC to memory
- FIFO buffers acquisition during NAND Flash write cycle
- Serial interface provides external control and data extraction
- I²C interface for inter-board control

Both Circular and Linear Memory

- Requirements: capture pre-trigger data plus post trigger (analogous to an oscilloscope)
- Pre-Trigger, Circular memory is rapidly written / overwritten
 - FRAM is excellent non-volatile choice, but limited recording capacity
- Post-Trigger, Linear memory handles continuous recording
 - NAND Flash memory for long recording, but limited rewrite cycles
 - Cannot erase / re-write quickly, so inadequate for pre-trigger

To acquire both a fairly long pre-trigger record in addition to a much longer post-trigger data record requires two different types of memory technology.

Summary and Conclusions

- AE Recorder has many favorable design features:
 - Programmable gain and balance per channel
 - High sample rate
 - Long recording time
 - Multiple analog/discrete channels
- Strong High-G pedigree
 - 3AMP, 3DDR-AM, others
 - Design has been validated in sled track environment

AE Recorder is Sandia's most advanced/versatile high-G recorder.

Questions?

- Contact information:
 - Mike Partridge

 Sandia National Laboratories
 PO Box 5800, MS0661
 Albuquerque, NM 87185
 (505) 845-9676
 mepartr@sandia.gov
 - Shane Curtis
 Sandia National Laboratories
 PO Box 5800, MS0661
 Albuquerque, NM 87185
 (505) 284-5493
 skcurti@sandia.gov

Back Up

Component Evaluation for Shock

- Begin with electrical characterization under static loading
 - quasi-static compressive stress axially & laterally
- Drop table, Hopkinson bar and VHG impact testing for dynamic loads

Adapter fixture attaches same circuit for VHG testing

White, H.G., et al., *High-G Testing for Fuze Research*, in 74th Shock and Vibration Symposium. 2003, SAVIAC: San Diego, CA.

Importance of Check Channels

Example system, Measurement configuration:

Penetrator instrumentation with Bessel LP filter, switched-

capacitor type

Gas Gun Launch Pulse

Integrates to correct velocity and displacement

Check Channel Reveals Problem

- A channel with resistor replacing accelerometer
 - Passes thru same filtering as normal channel
 - Piezoelectric components in signal conditioning create bogus signals

Correct response would have been a flat-line output

