European LEEFI Based Fireset and ESAD

☆JUNGHANSDefence

59th NDIA Fuze Conference *"Fuzing Systems for Advanced Weapon Performance"* CHARLESTON, SC - May 3-5, 2016

JUNGHANS Defence – Max Perrin, Chief Technical Officer

Outline

- New Fuze/SAD Requirements
- Electronic S&A Devices / EFI Benefits and Background
- LEEFI Based ESAD Benefits and New Applications
- LEEFI Based Fireset and ESAD Development Objectives
- Current Programs and Technical/Product Achievements
- Conclusions

JUNGHANS Defence – The Fuze Company

Complete range of fuzes for all types of munitions

Key competences in Fuzing technologies, Micro-technologies and Ammunition electronics

New Fuze / S&A Device Requirements New Trends

‡JUNGHANS **New Requirements – New Functions** IM (Insensitive Munitions) STANAG 4187 (2nd Safety Feature) Need for a Safety, Arming and Firing Function STANAG 4368 – Motor ISD with Self-Destruct Feature **New Functionalities** Self-sterilization / self-neutralization **More Flexibility** Mission Abort **Overflight Safety More Control** Back-to-Safe Fail-Safe Design

Tunable / Aimable Warhead

Collateral Damage Reduction

Hard Target Fuzing

Modularity Miniaturization

Shock hardening

Defence

Multi-mode / Multi-missions

Mode Selection Before Flight / In-Flight

Electronic S&A Device – Main components

Electronic Safety and Arming Technology -Main Benefits

- High level of insensitivity (IM) with secondary explosives
- Resistance to electromagnetic and electrostatic disturbances
- Able to withstand very high mechanical stresses (hard target penetration)
- Flexible: electronic safety management and safety event processing
- Makes testing operation easier during the whole life-cycle
- Come back to initial safe status in case of system failure (collateral damages and UXO risk reduction)
- Enables "smart warhead" design (multipoint initiation, precise ignition timing)
- STANAG 4187 ed.4 safety design compliant

LEEFI Based Fireset and ESAD

- Main benefits provided by LEEFI technology (Low Energy Exploding Foil Initiator)
 - Lower design constraints
 - Circuit layout is made easier due to reduced voltage
 - Increased margin
 - Smaller size
 - Smaller circuit design and smaller high-voltage components
 - Adaptability to various applications sizes and form factors
 - Higher resistance to high shock
 - Lower cost
 - Lower voltage enables the use of standard components instead of application specific HV components

Enable the use of ESAD solutions in a broad range of applications, for both munitions and missiles

MP - May 2016

Main/New Applications for LEEFI Based ESAD

• Rocket Motor Ignition

- STANAG 4368 compliance
- Possibility of multi-pulse ignition (dual stage motor)
- Possible use of TBI (through bulkhead initiation device) or direct ignition of propellant
- Adaptation to various form factors

Smart warhead initiation

- Multi-point initiation for selectable and tailorable effects
 - Smaller size firesets
 - Precise control of timing
- Possible combination of both Warhead and Rocket Motor safety/firing control device
- Guided munitions and small missiles warhead SAD
 - Fuzing/SAD functions distributed
 - Multi-point initiation

☆JUNGHANS

Defence

JUNGHANS Defence's LEEFI Based Fireset Development Main Objectives

- Rely on company background, proven through several EFI and ESAD products design and manufacturing
- Select key materials and components of the LEEFI and fireset from secured supply chains
- Optimize the LEEFI-based fireset design and manufacturing, as a whole (not only as single LEEFI component)
- Design LEEFI/Fireset capable of all expected applications from hard-target weapon to aerial-target weapon, for warheads and rocket motors
- Consider industrial constraints, either in the manufacturing process or from the supply chain
 - Keep required performances even with possible deviations from materials and components

Versatile LEEFI based fireset with robust design

Current programs (DGA programs)

- French MoD (DGA) support to LEEFI based ESAD through <u>two</u> <u>R&D contracts</u>
 - 1 Development of LEEFI based ESAD
 - Objective: obtain a qualified source for LEEFI and key components (including HV switch)
 - ESAD modular design (Missile integration flexibility)
 - Compatible with hard-target warhead weapon application
 - 2 Design/validation of LEEFI based ESAD able of multipoint initiation (ignition) warhead

• Up to 6 initiation points

Objective: obtain mature technology enabling new ESAD/Fuze development

- LEEFI characterized according to STANAG 4560
- Fireset and ESAD performances validated in relevant environment conditions (shock / acceleration, extreme temperatures)

Significant support from French MoD (DGA) has enabled to achieve mature design of a LEEFI and LEEFI based Fireset

Main Achievements LEEFI

‡JUNGHANS Defence

- LEEFI design: Validation of the main parameters
 - Expected operating voltage achieved
 - Bridge dimensions and thickness (copper bridge)
 - Flyer material and deposition process
 - Explosive material compound (HNS-IV + binder)
 - Mechanical integration
 - Bridge chip connection
 - Plug-in LEEFI component:
 - Easy connection/disconnection on the fireset/ESAD
 - Benefits for ESAD testing, compliance with increasing reliability demands
 - High shock resistance validation
 - Tested on concrete slab firing shock > 10,000g
 - Optimization of the paramaters, in consistency with the various components of the fireset
 - STANAG 4560 characterization

Plug-in LEEFI

Wafer with

LEEFI design is validated with the whole spectrum of specifications

Main Achievements Fireset Main Components

Defence

- High-Voltage Switch: Assessment of various options
 - COTS solid-state components, including "one-shot" components: possible but main drawbacks and risks
 - Option rejected
 - Design of a new silicon switch (MOS technology) from European founder:
 - Good results obtained with industrial prototypes
 - Design of an alternative HV switch solution: spark gap
 + semi-conductors circuit
 - Validated with the whole spectrum of specification
 - Tested performances are compliant with operational as well as testability requirements
- All high-voltage components, including HV converter, integrated in the independant fireset module

Silicon Switch

Fireset Module

Key components of the Fireset have been fully validated

Main Achievements Fireset Module

- **Fireset module**
 - Designed in view of distributed multi-point initiation, in the frame of these projects
 - Link with ESAD Control Electronics is carried out by low-voltage connection
 - Tested under high-shock condition (hard target penetration)
- Other fireset designs achievable, with different form factors, distributed or integrated within ESAD / ISD
- Design and validation of a LEEFI version specifically adapted for rocket motor ignition, directly igniting propellant
 - Small size and cost-effective solution compared to the use of TBI component

Design adaptable to various ESAD/ISD configurations

Modules

ESAD

or ISD

Hard Target - Shock Test

Main achievements Complete ESAD

- ESAD, carried out in the frame of the running programs, incorporate safety control electronics, mission management and interfaces electronics
- Two ESAD versions, based on similar basis, have been developped, and adapted to the specific requirements
 - 1- with 6 fireset modules (multipoint initiation warhead: 6 initiation points)
 - 2 with 4 fireset modules (2 initiation point for warhead, 2 ignition pulse for rocket motor)
- Any other option with fireset integrated inside ESAD/ISD housing can be achieved

LEEFI-based ESAD, compliant with STANAG 4187 and 4368, tested in operational munition environment

LEEFI Technology Activity - Next Steps

- End 2015: French MoD awarded a contract to JUNGHANS for an upgrade of FBM21 aerial bomb fuze, to implement additional functionnalities as well as the new LEEFI based fireset
 - Implementation of LEEFI fireset and ESAD in munition fuzes, produced in large quantities, will ensure the continuity of such technology

FBM21 Electronic Module including Fireset

 JUNGHANS product range extension: new missile or munitions warheads ESAD and rocket motors ISD (including multi-point initiation) based on LEEFI technology

Conclusions

- Low Energy EFI technology enables the use of Electronic S&A Device solutions in a wide range of applications, for both munitions and missiles
- JUNGHANS Defence has developed a robust LEEFI based Fireset in order to meet its customers new requirements
 - to provide them with additional functionalities and more flexibility in new designs of missiles/munitions warheads or rocket motors
 - to guarantee their supply on this key technology

Thank you for your attention.

Max Perrin Chief Technical Officer max.perrin@junghans-defence.com

JUNGHANS Microtec GmbH Unterbergenweg 10 78655 Dunningen Germany Phone +49 7402 181-0 Fax +49 7402 181-400 JUNGHANS T2M SAS Route d´Ardon 45240 La Ferté Saint Aubin France Phone +33 23851 6422 Fax +33 23851 6835

www.junghans-defence.com E-Mail: info@junghans-defence.com