

Development of an in-line EFI Ignition Safety Device (ISD) for Fuzing of Solid Fuel Motors

WE PARTNER WITH OUR CUSTOMERS TO IMPROVE, SAVE AND PROTECT PEOPLE'S LIVES

Contact Information

e2v technologies (UK) Ltd 168 Sadler Road Lincoln LN6 3RS United Kingdom

Tel +44 1522 500815

Dick Seddondick.seddon@e2v.comBrion Wellerbrion.weller@e2v.comSimon Bowersimon.bower@e2v.comGraham Cookgraham.cook@e2v.com

e2v Electronic Safety & Initiation

- e2v has been involved in Electronic Initiation since 1984, beginning with e2v funding of Exploding Foil Initiator technology development concentrating on
 - EFI research and characterisation
 - Explosive material characterisation
 - Firing circuit development for Electronic Safety and Arming applications
- e2v supply Electronic Safety & Arming Units and electronic Ignition Safety Devices to weapon systems for Air and Surface launched Missiles
- Also ESAUs for underwater applications including
 - Torpedoes
 - Underwater EOD systems

Introduction

- Many current solid fuel motor ignitors rely on Through Bulkhead Initiators (TBI) and a mechanical shutter or explosive/TBI combination to ensure safety
- Size and mass penalty with these systems
- Removal of the mechanical shutter would require robust Safety and Arming electronics architecture
- But would shorten Arming/Firing timeline and reduce size and mass
- Proven Safety and Arming electronics exists on modern explosive warhead detonators in systems which use an EFI
- Question; Can energetic material be reliably initiated by an EFI-type structure?
- If so, an EFI-based igniter for pyrotechnic materials becomes possible.

EFI based direct Ignition Safety Device **e2V**

- EFI structure can be modified to produce reliable direct ignition of BKNO3 pyrotechnic
- Enables development of a direct-ignition
 Electronic Ignition Safety Device
- Inherent insensitivity of the EFI bridge structure to electrical stimulus is maintained
- Physical separation of an electrically activated element from the energetic composition
- Elimination of explosive material from established through bulk-head initiator configuration (simplification of energetic chain)
- No moving parts
- No mechanical shock during ignition

EFI ISD Typical Design Overview

- Typical design shown
- EFI initiated
- Pyrotechnic output
- Integral Safety electronics
- Integral HV circuitry
- Automatic charging and firing after removal of SF2

Key Feature; EFI initiator

Copper-insulator laminate structure

- Copper layer narrows to localised 'EFI bridge'
- Based on proven detonator EFI technology
- Flyer layer separates pyrotechnic from electronic system
- Fast-rising current explosively bursts bridge
- Pyrotechnic initiates producing flame and particulate output

Lateral view of EFI burst , 25ns exposure, 250ns between frames

Pyrotechnic pellet

Key Feature; Pyrotechnic Pellet

- Pressed mixture of Boron and KNO₃
- Good mechanical integrity
- Life and ageing data suggests pellet is physically stable
- 250mg minimum, 5.2mm long,
 6.35mm diameter
- Plain barrel shape
- Output pressure of 25-50 bar into 20cc volume

Key Feature; Safety and Arming Electronics **E2V** Bringing life to technology

- Two safety features, three energy breaks
- One dynamic break, two static breaks
- S1, S2 and dynamic breaks are different components
- Independent control of breaks
- Galvanic isolation between power and inputs
- Three different technology opto-isolators
- Removal of supply, input 1 or input 2 will return unit to unarmed state

Key Feature; HV PSU and Firing Circuit **C**2V Bringing life to technology

- Ferrite—cored transformer
- 'Flyback' HV PSU
- Ceramic firing capacitor
- TVG switch
- Firing pulse generated at pre-determined charging voltage (Automatic Firing)

EFI ISD Key Features - Summary

- Internal seal maintains motor pressure vessel to greater than 300bar backpressure
- Electrical isolation exists between firing circuitry and the pyrotechnic pellet (due to EFI cover-layer)
- Three energy breaks combine to provide two independent safety features
- Provides detonator type Safety & Arming capability compliant to STANAG 4368, & MIL-STD 1316
- No explosive content therefore no mechanical shock
- Prompt Arm and Fire operation, firing energy is not stored prior to operation
- Initiation occurs promptly after removal of second safety feature
- EFI-type structure initiates pellet to provide flame and particulate
- Standard BKNO₃ pyrotechnic material is used

Output pressure-time performance

- Typical output pressure-time curve shown
- Output peak pressure of 35bar typical into 20cc volume
- -55°C/+85°C operating temperature range
- Risetime to peak pressure of 10ms typical
- Minimum energy output of 1200J

Output pressure-time performance

- Pressure / time profile Test at -55°C into 20cc volume.
- Typical spread 32-40bar peak, 9-15ms time to peak

Typical timing diagram

- Power and Input 1 applied simultaneously
- Input 2 signal is 'Fire' command and enables firing energy accumulation to begin
- Firing energy is accumulated to All-Fire level plus a margin
- Output is initiated automatically once the Firing voltage is reached

EFI ISD Validation

- Environmental capability
 - Vibration to Def Stan 00-35
 - Operational , transport profiles
 - 10s hours per profile, all axes
- Mechanical shock
 - o 100g, 6ms, trapezoidal
- Thermal shock
 - -55°C/+100°C, 20°C/min, 200
 cycles
- Thermal cycling
 - o Def Stan 00-35 A1 profile
- Humidity
 - Def Stan 00-35, Chapter 3-13
- All test samples operational to test requirements at conclusion of environmental tests

Conclusions

- The design and performance of an EFI-based Ignition Safety Device (ISD) has been outlined
- The ISD uses an EFI structure to directly ignite BKNO₃ and has no moving parts
- The ISD does not use explosive and does not generate a prompt shock when operated
- An internal seal maintains the rocket motor pressure vessel envelope
- Electrical isolation between the firing circuitry and the BKNO₃ pellet is maintained by an internal insulating layer
- Three energy breaks combine to provide two independent safety features
- Provides detonator type Safety & Arming capability compliant to STANAG 4368, & MIL-STD 1316
- Environmental proving has been completed to typical military platform environments
- Prompt Arm and Fire operation after removal of second safety feature, firing energy is not stored prior to 'Fire' command
- Peak output pressure is typically 35 bar across military temperature ranges and is generated typically 20ms after the 'Fire' command is issued

e2v designs, develops, qualifies and produces in-line electronic safety, arming and initiation solutions for high-explosive Effectors and solid propellant Motors on missile and torpedo sub-systems

