Collaborative Cooperative Engagement
– Parent Child Concept

Frank Fresconi, PhD
Guided Lethality
-Vision-

Assured Delivery of Lethal Payload

Increased Performance and Widened Engagement Space

Advanced Target Acquisition

Advanced Launch

Advanced Lethal Mechanism

Instantaneous Delivery of N Payloads through Complex Environment

Adaptively Allocate Flight of Multiple Projectiles Based on In-Flight Measurements

Enabling Technologies

Maneuverability

Navigation

Platform Agnostic

Target Agnostic

Armor

Distributed Personnel (Defilade/Open) and Light Vehicles

Counter – UAS/RAM
Technology Implementation Plan for Desired Lethal Effects at Standoff Ranges in Constrained Environments

UNCLASSIFIED

The Nation's Premier Laboratory for Land Forces

Sciences for Lethality and Protection Campaign

- **ARL Technology Implementation Plan for Guided Lethality**

<table>
<thead>
<tr>
<th>FY16 – FY19</th>
<th>FY20 – FY25</th>
<th>FY26 – FY30</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANEUVERABILITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spin-stabilized projectile maneuvers</td>
<td>variable thrusters / vector control</td>
<td>hybrid variable-thruster arrays and aerodynamic control</td>
</tr>
<tr>
<td>high maneuverability airframe</td>
<td>extremely high-G, aerodynamic control</td>
<td>force/moment arrays for arbitrary three-dimensional acceleration profiles</td>
</tr>
<tr>
<td>unstable & enhanced lifting surface/deployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>image-based navigation (IBN): high speed or high maneuverability</td>
<td>IBN: countermeasures</td>
<td>multiple in-flight / high speed communications</td>
</tr>
<tr>
<td>IBN: air targets with ground vehicle, personnel, urban targets</td>
<td>IBN: multispectral</td>
<td></td>
</tr>
<tr>
<td>inertial measurement unit (IMU): heuristics</td>
<td>network-based RF data-linking</td>
<td></td>
</tr>
<tr>
<td>radiofrequency (RF): software-defined radios, M-Code GPS</td>
<td>high accuracy IMU arrays</td>
<td>IBN: navigators</td>
</tr>
<tr>
<td></td>
<td>flash LIDAR</td>
<td></td>
</tr>
</tbody>
</table>

External Advancements in Performance and SWaP/C of:

- Processors (GPUs, …) → algorithms
- Measurements (IMUs, RF antenna / receiver, imagers / optics, …)
- Actuation Technologies

ASSURED DELIVERY

- SMALLER CALIBER
- LOWER COST
- EXTREME ACCURACY
- MORE COMPLEX ENVIRONMENT
- FASTER DYNAMICS (MACH, SPIN RATE, TIME-OF-FLIGHT)
- HIGHER GS

ADVANCED DELIVERY *(SWARMING)*
Personnel:
- 23 Scientists & Engineers (50% PhD, 50% Masters/Bachelors)
 • mechanical, aerospace, electrical, computer science, physics
- 13 Technicians

Facilities:
- High-Performance Computing
- Shock Tables and Air Guns
- GNC Laboratories
 • processor/hardware-in-the-loop
 • GPS simulation
 • munitions sensor/actuator characterization
 • anechoic chamber
 • component fabrication
- Free-Flight Ranges
 • 2x spark (small/med cal, med/large cal)
 • firing range instrumentation (high-speed photo, radar, X-ray, pressure, MET, yaw cards, survey)

UNCLASSIFIED
Guided Lethality
- Resources / Core Capabilities -

UNDERSTAND LAUNCH, FLIGHT, AND GUIDED DELIVERY TECHNOLOGIES
Army Warfighting Challenges Addressed:
AWFC 3: Provide security force assistance
AWFC 13: Establish and maintain security across wide areas
AWFC 15: Conduct combined arms air-ground maneuver
AWFC 17: Coordinate and integrate Army and joint, inter-organizational, and multi-national fires and conduct targeting across domains
AWFC 18: Deliver fires and preserve freedom of maneuver

<table>
<thead>
<tr>
<th>FY16 Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivability and Reliability of GNC Components</td>
</tr>
<tr>
<td>Fundamental Flow Fields of Complex Airframes</td>
</tr>
<tr>
<td>Fluid Mechanics of Maneuvering Projectiles</td>
</tr>
<tr>
<td>Dynamic Flight Behavior of Maneuvering Projectiles</td>
</tr>
<tr>
<td>Maneuver Technologies</td>
</tr>
<tr>
<td>Navigation Estimation Algorithms</td>
</tr>
<tr>
<td>Emerging Non-Vision and Inertial Navigation Technologies</td>
</tr>
<tr>
<td>EO/IR-based Navigation</td>
</tr>
<tr>
<td>Assured Navigation Theory</td>
</tr>
<tr>
<td>Omnisonic Mechanics and Control</td>
</tr>
</tbody>
</table>
NAVIGATION WITHOUT GPS
COMMERCIAL COMPONENTS
GUN HARD
MODERATE SIZE/WEIGHT/POWER
LABORATORY DEMONSTRATION (TRL 3-4)

RELEVANT APPLICATIONS
• MORTARS
• ARTILLERY
• SHOULDER-LAUNCHED
• AIR DROPPED
• MISSILES
• TANKS
• 40MM AND BELOW…

MUNITIONS TECHNOLOGIES
HIGH MANEUVERABILITY AIRFRAME
• AIRFRAME (STRUCTURES/AEROMECHANICS)
• MANEUVER MECHANISM
• FLIGHT CONTROL ALGORITHMS

IMAGE-BASED NAVIGATION
• EMBEDDED IMAGER/PROCESSING
• TARGET ACQUISITION/TRACKING ALGORITHMS
• STATE ESTIMATION ALGORITHMS

LAUNCHER
REMOTE TARGET SELECTION
MOVING TARGET
UNCLASSIFIED

Current Focus: Moving Target Challenge
- Status -

Soft Launch
- Embedded Imager/Processing
- Acquisition/Tracking Algorithms
- State Estimation Algorithms
- Flight Control Algorithms
- Control Actuation
- Airframe

Gun Launch
- Airframe

Wind Tunnel
- Flight Control
- Control Actuation
- Airframe

Model: Challenge platform maintains cohesion/focus and drives critical experiments
UNCLASSIFIED

High Maneuverability Airframe

- Validation of simulations
- Understanding of maneuver mechanism
 - Structural response to gun launch
 - Dynamic modeling

- Understanding of maneuvering flight behavior
- Aerodynamic modeling
- Flow interactions (roll and pitch/yaw)
- Flight control with coupled fluid/flight/actuator dynamics

- Verify performance of flight control algorithms

\[
\begin{bmatrix}
\dot{\theta} \\
\dot{\phi} \\
\dot{\psi}
\end{bmatrix} =
\begin{bmatrix}
\alpha_{\text{roll}} \\
\alpha_{\text{pitch}} \\
\alpha_{\text{yaw}}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\delta(t) + 2\xi\omega\delta(t) + \omega^2\delta(t) = \delta_C(t - t_D)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{damping ratio} \\
\text{canard deflection} \\
\text{time delay}
\end{bmatrix}
\]

UNCLASSIFIED

The Nation's Premier Laboratory for Land Forces
understanding of COTS embedded imagers in ballistic environment
• modeling (sharpness, re-projection, etc.)
• structural response to gun launch

verify performance of state (line-of-sight rate, attitude) estimation algorithms

real-time processing of algorithms / embedded electronics

understand relationship between acquisition/tracking algorithm complexity and performance in sparse/varied environments
Future Direction: Swarming Munitions
- Motivation -

Mixed Target Sets

- **155mm diameter warhead / effects**
- **60mm diameter warhead / effects**
- **40mm diameter warhead / effects**

Relationship between Effectiveness and Munition Size / Placement

- **LETHALITY of 155mm with 10% of the energy and 50% reduced collateral damage through modularity**

How to achieve low-cost delivery against complex target layouts in contested environments?
- Tight distribution to critical points of hard targets
- Tailored distribution to light vehicles and distributed personnel

How to understand multiple/combined effects?
Swarming Munitions
- Vignettes -

Future Indirect Fires

Future Direct Fires

Counter-Defilade

counter (rockets, artillery, mortars) and (anti-)swarm defense

Counter-counter (rockets, artillery, mortars) and (anti-)swarm defense

maneuver, accurate navigation, magazine depth

volume, evasive/aggressive maneuvers, accurate navigation, signature management

THEMES: Massed Fires of Smaller Bodies, Complex Threat, Distributed Navigation Information, Aggressive Maneuvers
Swarming Delivery Concepts

Parent Entity with Superior Information Capabilities Enables Guidance to Threat

- image-based navigation, ranging, and communications technologies
- parent glides for extended range and deploys children for coordinated delivery

Child Vehicles Equipped with Minimal Components Maneuvers Off Parent Entity

- mix of ranging/communications technologies
- maneuver to desired pattern
Understanding of flow separation, vortex interactions, turbulent eddy scales, shock-shock / shock-boundary layer interactions, transient flow phenomena, turbulence modeling and smart meshing

Nonlinear dynamics and stability theory

Physics of flight and discovery of novel maneuver effectors
 • high maneuverability control mechanisms/airframes

Flight control algorithms for novel measurement and maneuver technologies with minimal feedback, constrained input, uncertainties and nonlinear (e.g., coupled roll-pitch-yaw) dynamics
 • high-level flight control architectures for collaborative/swarming behaviors

Assured weapon navigation: target acquisition/tracking/state estimation algorithms derived from various measurements with coupled modeling of technologies in sparse environments
 • innovative sensing and multi-agent estimation algorithms

Rapid, high-fidelity, validated, multi-disciplinary design modeling and simulation

Cost-effective, accurate experimental techniques

Extreme Environment
 • Velocity scales (0.2 < Mach < 5+)
 • Time scales (1s < time-of-flight < 100s+)
 • Size scales (0.50 caliber < diameter < 155mm+)
 • Loading/survivability scales (100 < Gs < 100,000+)
 • Information/action poor: sensing in high dynamics/sparse (e.g., GPS denied) environments, embedded processing limitations, actuation technology constraints
 • Contested/counter-measured, highly-dynamic, military conditions (reliability, temp/vibe, accuracy…)

Affordability

Capability/threat-driven: maintain/increase performance and widen engagement space
MOTIVATION

Army flies bodies transiting hypersonic to subsonic Mach regimes and many missions would benefit from enhanced maneuverability through uncertain, cluttered, and contested environments.

CHALLENGES to understanding flight behaviors of maneuvering bodies across omnisonic regimes:

- Fluid mechanics: flow separation, vortex interactions, turbulent eddy scales, shock-shock interactions, …
- Flight dynamics/stability/control: algorithms for coupled roll-pitch-yaw and high angle-of-attack, nonlinear stability theory, integrated guidance and control algorithms to reduce sensor/actuator burden, …

APPROACH

- Accurately predict flight physics
- Exploit understanding of flight physics:
 - Discover mechanisms to produce favorable forces and moments
 - Nonlinear control theory

THEORETICAL BASIS FOR OVERCOMING THE SCIENTIFIC BARRIERS TO MANEUVERABILITY OF ATMOSPHERIC FLIGHT VEHICLES
Swarming Delivery Challenges - Formation Flight Control

- Child airframe equipped with low cost components (thrusters, relative position)
- Control algorithm based on flight modeling

\[\ddot{r}_A = -k_1 \left(\frac{C_{L\alpha}}{C_{M\alpha}} \right) \left[(s - s_0) \ddot{z}_0 + (s - s_1) \ddot{f}_1 \right] \]

Feedback

System Properties (e.g., Mass, Aero)

Control

- Optimization routine used to resolve desired delivery formation of multiple bodies in flight

Numerical Experiments:

10 Bodies (Parent, 9 Children) Launched (150m/s) from Unmanned Aerial System with Targets at (400, 0) and desired circular pattern with 1m radius
What is the minimal information for swarming navigation technology performance?

- heterogeneous mix of imager, ranging, communications on multiple vehicles
- algorithms with local and distributed processing nodes

Can we improve position accuracy with multiple vehicles flying with poor measurements (latencies, update/link, bias, etc.)?

Example of algorithms for minimal information flow: low throughput adaptive classifiers for imagers
Precision and Cooperative Weapons Flight and Delivery

Omnisonic Mechanics and Control/Ballistic Mechanics

- Omnisonic Mechanics and Control: discover how to achieve next generation increase in maneuverability of flight bodies
- Assured and Collaborative Navigation Theory: innovate theories to navigate in contested environments across a variety of conditions, likely using multiple agents with RF- or EO/IR-based measurements

Low Cost Hyper-Accurate Munitions Technology

- Moving Target Technology: demonstrate moving target (e.g., image-based navigation, high maneuverability airframe) technologies
- Maneuvering Flight Bodies for Small-Diameter Munitions: demonstrate control mechanism for
 1. low speed/setback environment (child vehicle, counter-defilade/small UAS)
 2. high speed/setback environment (CCRAM/anti-swarm, combat vehicle)

Swarming Weapons

- Morphing Airframe Technologies: demonstrate launch and flight technologies for gliding parent vehicle which deploys parent vehicles
- Swarming Navigation Technologies: demonstrate navigation technologies for swarming munitions in contested/denied/counter-measured environments

TRANSITION KNOWLEDGE FROM 6.1 TO 6.2 PROGRAMS
DEMONSTRATE TECHNOLOGIES (TRL3-4) FROM 6.2 PROGRAM TO ASSIST TRANSITION TO PARTNERS
Guided Lethality
- Recent Transitions/Partners -

Guided Small/Medium Caliber Munitions

Guided Indirect Fires
Predecessors of our Group (Ballistics Research Lab) → understand flight of munitions

- Flight Dynamics and Stability Theory
- Spark Ranges
- Survivable/Miniature Onboard Sensors and Telemetry

High-g Resistant Electronic Fuse for Projectile Payloads

WILLIAM H. MERMAGEN
Battelle Research Laboratories
Aberdeen Proving Ground, Md.
Exploit skylight polarization as navigational cue in ballistic environment (passive, jam/spoof proof, drift and GPS free)

- Rayleigh-sky modeling and algorithms for azimuth/elevation

Novel measurement techniques (compressive sampling / spectral imaging) for small size/weight/power form factor weapons