Benefits of an Active Recoil Control System

William Bartell, Joshua Stapp, Matthew Tomik, Philip Wetzel
April 26, 2016 – NDIA Armament Systems Forum, Fredericksburg, VA
Agenda

• Recoil of Large Caliber Weapons
• Active Recoil
• Active Recoil applied to Soft recoil
• ADIM: A Case Study
• Conclusion
• Recoil systems are designed to dissipate a short duration firing impulse over a greater time and distance.
• Distributing the firing load reduces the impulse imparted to the supporting structure.

• Traditional recoil systems are optimized for the maximum weapon impulse.
• Limited compensation is possible at the cost of added complexity (i.e. elevation compensation).
• Most variables leading to atypical firing impulses are unaccounted for, including:
 – Propellant temperature
 – Munition lot variations
 – Lesser charge/increment fires
 – Hydraulic fluid properties (viscosity)
 – Manufacturing tolerances of the recoil mechanisms

• This results in underutilization of the available recoil stroke for most fires.
What is Active Recoil?

- Active recoil uses feedback from sensors to control the recoil system in real time.
- By controlling the recoil forces the available recoil length can be fully utilized resulting in reduced impulses transmitted to the support structure.
- At reduced charges/increments the optimization is more dramatic.

![Diagram showing comparison between traditional and active recoil systems](image-url)
Possible Active Recoil Technologies

1. Variable Viscosity Fluid
 - Magnetorheological
 - Electrorheological

2. Variable Orifice Valve

3. Electric Motor

4. Mechanical Brake
 - Eddy Current
 - Friction Disc
 - Hysteresis
 - Magnetic Particle

Should Fail Safe!
Where does active recoil make sense?

- Active Recoil Applied to Traditional Recoil
 - Potential Benefits
 - Utilize the entire recoil stroke for all charges/increments
 - Perform elevation compensation with active recoil device
 - Simplify recoil buffer
 - Loosen manufacturing tolerances
 - Perform diagnostics/prognostics on recoil components
 - Increase fatigue life of structure
 - Drawbacks
 - Does not improve force curve for max firing impulse
 - Support structure must still be designed to handle max firing load
 - Requires power
 - Conclusion
 - Historically, the sensors and processing hardware required to implement active recoil produced marginal benefits for the cost
 - Given modern technologies, it may make sense to revisit active recoil

What About Soft Recoil?
• Benefits
 – For similar recoil masses, initial recoil velocity in traditional recoil is ~twice that of soft recoil.
 – Recoil stroke can be shortened or recoil force can be reduced.
Employment of Soft Recoil in Modern Weapons

Experimental
- XM204 105mm Howitzer
 - US ARMY
 - 1906
- ATLAS 105mm Howitzer
 - US ARMY
 - 1966
- Hawkeye 105mm Howitzer
 - Mandus Group RIA
 - 1970
- ADIM 81mm Mortar
 - US ARMY
 - 1975

Fielded
- Mountain Gun 65mm Howitzer
 - France
 - 1997
- MK-19 40mm Grenade Launcher
 - US NAVY
 - 2006
- 2B9 Vasilek 82mm Mortar
 - USSR
 - 1975
- ADIM 81mm Mortar
 - US ARMY
 - 2011
- 2B9 Vasilek 82mm Mortar
 - USSR
 - 2013
Soft Recoil Challenges Solved with Active Recoil

<table>
<thead>
<tr>
<th>Ignition Timing</th>
<th>Impulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Recoil</td>
<td>![Graph showing Ignition Timing]</td>
</tr>
<tr>
<td>![Graph showing Ignition Timing]</td>
<td>![Graph showing Impulse]</td>
</tr>
<tr>
<td>![Graph showing Soft Recoil with Active Recoil]</td>
<td>![Graph showing Soft Recoil with Active Recoil]</td>
</tr>
</tbody>
</table>

Must know prior to firing
Automated Direct/Indirect fire Mortar (ADIM)

Active + Soft Recoil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammunition Caliber</td>
<td>81</td>
<td>mm</td>
</tr>
<tr>
<td>Ammo Capacity</td>
<td>20</td>
<td>rounds</td>
</tr>
<tr>
<td>Range</td>
<td>300-6300</td>
<td>m</td>
</tr>
<tr>
<td>Traverse</td>
<td>360 cont.</td>
<td>degrees</td>
</tr>
<tr>
<td>Elevation</td>
<td>-3 to 85</td>
<td>degrees</td>
</tr>
<tr>
<td>Weight</td>
<td>~2300</td>
<td>lbs</td>
</tr>
<tr>
<td>Recoil Force</td>
<td><10,000</td>
<td>lbf</td>
</tr>
<tr>
<td>Recoil Force (w/ Active Recoil)</td>
<td><2,000</td>
<td>lbf</td>
</tr>
</tbody>
</table>

![Diagram of ADIM with labeled components: Encoder, Controller, Brake]
ADIM Active Recoil Brake

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max braking force</td>
<td>~1700</td>
<td>lb</td>
</tr>
<tr>
<td>Max Velocity</td>
<td>49.2</td>
<td>ft/s</td>
</tr>
<tr>
<td>Brake On Time</td>
<td><1</td>
<td>ms</td>
</tr>
<tr>
<td>Brake Off Time</td>
<td>~45</td>
<td>ms</td>
</tr>
<tr>
<td>Release Current</td>
<td>~10</td>
<td>A</td>
</tr>
</tbody>
</table>
Active Recoil System

Position Sensor → Controller → Brake

- Position Data
- Status Information
- Electrical Current

Fire

Send Lookup Tables
Send Fire Command
Controller

Start

Release Brake & Fire

Get Recoil Position & Velocity

Complete?

Yes

Forward

Direction

Rearward

Calculate Forward Setpoints

Engage Brake

End

Calculate Recoil Setpoints

Execute Control Loops
Control System Variables
• Controlled Variables
 – Solenoid Current
 – Recoil velocity
• Disturbance Variables
 – Firing Impulse
 – Passive Recoil Force
• Manipulated Variables
 – Solenoid current
ADIM's employment of Soft Recoil combined with Active Recoil

Charge 4

No Braking

Recoil Force

Encoder

Recoil Brake

Click to play
ADIM’s employment of Soft Recoil combined with Active Recoil

- **Charge 4**
- Braking on recoil stroke

Recoil Force
- 10,000
- 2,000
- 0

Encoder

Recoil Brake

Click to play
ADIM’s employment of Soft Recoil combined with Active Recoil

- **Charge 3**
 - No Braking
 - Recoil Force
 - 10,000
 - 2,000
 - 0

Encoder

Recoil Brake
ADIM’s employment of Soft Recoil combined with Active Recoil

Charge 3

Recoil Force

0
2,000
10,000

Braking on forward stroke

Encoder

Recoil Brake

Click to play
ADIM’s employment of Soft Recoil combined with Active Recoil

Charge 3

Braking on forward & recoil stroke

Encoder
Recoil Brake

Recoil Force

Charge 3

Position [m]

Charge 3

Time [s]
Conclusion

• Active recoil on ADIM prototype
 – Reduction of forces
 – Improved handling of variations
 – Going forward

• Future of Active Recoil
 – More viable than in the past
 – Application to other weapon systems

• Questions?

