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Autonomy Test & Evaluation Challenge 

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.  



T&E Throughout the Entire Engineering Process 
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Measuring Autonomous Systems 

 Objective – Autonomous system metrics are use to provide trust. 
Measurement-derived analysis should provide operators with insight into 
mission capability as a function of operating conditions. 

 Measuring the “level of autonomy” is not useful [ref. DSB 2012/2015] 

 Autonomy == Decisions - Measuring autonomy requires measurement of 
autonomous system decisions within the context of the system’s physical 
plant and the current operating conditions. Applicable metrics may be derived 
from: 

 Command and Control Theory [Alberts & Hayes] 

 Control Theory 

 Information Theory [Shannon] 

 Game Theory and Decision Science 

 Measures of Performance 

 Mission Objectives that will be satisfied 

 Mission Constraints that will be avoided 

 Measures of Effectiveness 

 Quantitative assessment of MOP 

 

New analytical methods are 

required because… 

 

Statistical analysis of autonomous 

systems operating in adversarial 

conditions is not valid without an 

accurate model of the adversary’s 

cognitive performance. 
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Formal Methods – Analyzing the Algorithm 
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Formal methods 

“Formal Methods” describes a set 
of mathematically rigorous 
techniques for proving properties 
of software systems. 

 

Theorem Proving – Proves that 
during an algorithm’s execution  
algorithm desired invariants will 
hold. 

 Correctness 

 Satisifiability 

 

Model Checking – Proves 

that a model used by the  

reasoning system exhibits  

desired properties 
 Self-Consistancy    
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Static Testing – Testing the Implementation of the 
Algorithm 
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Software Engineering Methods 

• Coverage Analysis 

• Function Point Analysis 



Unit Testing and System-wide Software In-the-loop 
Testing 
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Mixed HWIL and Simulation-based Testing of 
Autonomous Systems 
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Simulation-based 

testing is used to 

identify “boundary” 

tests that provide 

maximal value 
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Software Simulations for Autonomy Testing 

M&S Toolkit that models individual actor knowledge and decision-making 

 

Modeling fidelity must be equal to or greater than the level of fidelity used by 

the unmanned vehicle’s reasoning engine. 

 

Since cognitive algorithms typically operate with abstractions these tools 

should by low fidelity 
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Criticality-based Testing 

 Although we cannot exhaustively 
test any controller, perhaps we 
emphasize test scenarios for which 
no human intervention is possible: 

 

 A fault scenario will cause a critical 
failure in ttf seconds  

 A human can resolve a fault 
scenario in h seconds 

 A controller can resolve a fault 
scenario in c seconds.  For most 
faults, we assume c << h 

 An ‘ideal’ controller will solve all fault 
scenarios for which ttf < h 

 Thus, identify and test all the fault 
scenarios S that have a solution and 
for which ttf < h 

 

ttf = c 

ttf = h 

- 

+ 

ttf 

fault scenario with no solution 

fault scenario with solution 

S 

ttf = time to mission failure 
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Criticality Testing Metrics 
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 After 4.17 seconds of testing all failure combinations capable of 

causing a catastrophic failure within 1.0 seconds had been tested.   
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Visual techniques for data analysis 

Unprocessed Post-processed 

Defines risk conditions 

through the lowest 

common denominator 

• Processing a visual map exposes the  most influential states 

• This provides a clustering of critical test cases to be “examined” 
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Comparison of Stimulation Techniques 

Monte Carlo – 13% exploration Ground Truth Criticality – 6% exploration 

T-wise, 2T – 3% exploration T-wise, 3T – 6% exploration T-wise, 4T – 13% exploration 
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Hardware in-the-loop Testing (Bench and Flight)  
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Testing of Autonomous Systems in Complex 
Environments (TACE) 
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TACE System Architecture 
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TACE Flight Tests at Aberdeen Test Center 

APL Test Team on the tarmac at 

Phillips Army Airfield (PAAF) 

Aberdeen Test Center (ATC) 

Hand launch of  the Procerus 

research AUV controlled by 

JHU/APL’s Autonomy Tool Kit 

(ATK) 

Five Test Events with Multiple Sorties Were Executed during January/February 2014 
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Putting it all together – Making the Assurance Argument 

 

 

 

 

 

 

 

Autonomy TEVV GOAL 1 

Autonomy TEVV GOAL 2 

Autonomy TEVV GOAL 3 

Autonomy TEVV GOAL 3 

Autonomy TEVV GOAL 4 

Autonomy TEVV GOAL 5 

Assurance Arguments for 

Autonomous Systems 

Required Research – How do we make a compositional argument that combines 

• Licensure – Empirical Evidence from experienced “in the wild” 

• Experimental Evidence – Software in-the-loop and Controlled Hardware in-the-loop 

• Formal Proof of Correctness  

Cognitive Systems Engineering – How do we integrate unit tests into a system-wide argument? 

Testing as a Lifetime Sport – For those Autonomous systems that learn, testing doesn’t end 

with operational testing. 
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.  



Acknowledgements 

Thanks to our sponsors: 

 

Test Resource Management Center Unmanned and Autonomous 

Systems Test (TRMC UAST) Program 

 

ONR Machinery Automation Program 

 




