
Copyright © 2016. Unpublished Work. Raytheon Company.

Test and Evaluation of Autonomous Systems

in a Model Based Engineering Context

Michael Nolan

Raytheon USAF AFRL
Aaron Fifarek

Jonathan Hoffman

3 March 2016

2 Approved for Public Release. Case Number: 88ABW-2015-5959

Agenda

• Motivation

• Trust and Certification Process

• Background

• Formal Analysis

• Requirements Analysis

• Architecture

• Model Traceability

• SysML Representation of Autonomous System and

Autonomous System Development

• Basic example of Autonomous Systems T&E in MBE context

• Summary

3 Approved for Public Release. Case Number: 88ABW-2015-5959

Motivation

Identified
Need

Requirement
Development

Architecture
Development

Detailed
Design

Implementation

Integration

Verification

Validation

Transition

70% of faults are introduced
 3.5% faults are found
1x estimated nominal
cost for fault removal

Rework and certification is

70% of SW cost.4

20% of faults are introduced
 16% faults are found
5x estimated nominal
cost for fault removal

10% of faults are introduced
 59.5% faults are found

20-80x estimated nominal
cost for fault removal

20.5% faults are
found

300-1000x estimated
nominal

cost for fault removal

Opportunity to find faults as

they are introduced when

costs are low

Introduction, Discovery, and Cost of Software Faults1,2,3

1. NIST Planning report 02-3, The Economic Impacts of
Inadequate Infrastructure for Software Testing, May 2002.

2. D. Galin, Software Quality Assurance: From Theory to
Implementation, Pearson/Addison-Wesley (2004)

3. B.W. Boehm, Software Engineering Economics, Prentice Hall
(1981)

4 Approved for Public Release. Case Number: 88ABW-2015-5959

Analytical Proof
Synthesis

Modeling,
Simulation, Test
& Evaluation

Run Time
Assurance

Assurance
Validator

Validation
• Simulation
• Testing

Requirement
Formalization &
Analysis

Architecture
Formalization &
Analysis

∑

FORMALIZED
SAFETY ASSESSMENT

HAZARD MITIGATION
REQUIREMENTS

Design
• Requirements
• Architecture
• Models New Autonomy Need

Multiple
V&V
Technology
Paths

System Design and Safety Requirements
(ARP 4761, ARP 4754/A, MIL-HDBK-882E)

Testable Requirements & Verification Plans
(DO-178C/254, MIL-HDBK-516)

Certified
Assurance

Case

Compositionally Verified Systems of Systems

Trust and Certification
Products / Process

5 Approved for Public Release. Case Number: 88ABW-2015-5959

Formal Analysis

• What is Formal Analysis?

– Analysis performed on mathematically precise models utilizing elegant

Computer Science algorithms and tools

• Model-Checking

• Theorem Proving

• Why do we want to do it?

– We can exhaustively search the behavior of models to prove or disprove

desired properties

– Removal of ambiguity due to required mathematical rigor

– Can identify unintended and unspecified behaviors

Formal Methods refers to mathematically rigorous techniques and tools for the

specification, design and verification of software and hardware systems.
- Langley Formal Methods (http://shemesh.larc.nasa.gov/fm/fm-what.html)

6 Approved for Public Release. Case Number: 88ABW-2015-5959

Analysis
Advantage of Model Checking

Even Small Systems Have Trillions

(of Trillions) of Possible Tests!

Testing Checks Only the Values We Select Model Checker Tries Every Possible Value!

Finds every exception to the

property being checked!

7 Approved for Public Release. Case Number: 88ABW-2015-5959

Requirements Development & Analysis

Precise, structured standards to automate requirement

evaluation for testability, traceability, and de-confliction

8 Approved for Public Release. Case Number: 88ABW-2015-5959

Formal Requirements Analysis

• Natural language requirements are difficult to process logically and

mathematically especially if they are not written with a formal basis

– “The flight control function that performs the automatic avoidance maneuver
shall be of a level of redundancy equivalent to the primary flight control system”

• What is the formal definition of this constraint on the system?

• Not a trivial definition on the system

What does that mean?

There may be logical basis but

it’s not accessible to others.

Formal Methods refers to mathematically rigorous techniques and tools for the

specification, design and verification of software and hardware systems.
- Langley Formal Methods (http://shemesh.larc.nasa.gov/fm/fm-what.html)

Temporal logic definitions are not obvious to write for most individuals and takes years of

practice to master effectively

9 Approved for Public Release. Case Number: 88ABW-2015-5959

Formal Requirements Analysis

• Our Approach – Pattern Implementation

– Constrain natural language to patterns which contain a scope and a predicate

– Enforces the formal basis necessary to ensure mathematical rigor

• Can requirements be defined and verified compositionally?

Property
Patterns
Classes

Occurrence Absence

Universality

Existence

Bounded Existence

Order Precedence

Response

Chain Precedence

Chain Response

10 Approved for Public Release. Case Number: 88ABW-2015-5959

Architecture

Guarantee appropriate decisions with traceable evidence

during the system architectural design

11 Approved for Public Release. Case Number: 88ABW-2015-5959

Architecture: AADL and AGREE

• The Architecture Analysis & Design Language (AADL)
– Developed by SAE

– Architecture modeling notation with well-defined semantics

• Assume Guarantee REasoning Environment (AGREE)

plugins
– Developed by University of Minnesota and Rockwell Collins

– Part of the DARPA High-Assurance Cyber Military Systems (HACMS)
program1

 Assumptions Guarantees

Assumption: something
a system assumes about
it’s environment (inputs)

Guarantee: what you can
assume about the system
and the performance of
the system (outputs)

System
Implementation

1. Kathleen Fisher, “Using Formal Methods to Enable More Secure Vehicles:
Tufts University”, 16 September, 2014 DARPA's HACMS Program, URL:
http://wp.doc.ic.ac.uk/riapav/wp-
content/uploads/sites/28/2014/05/HACMS-Fisher.pdf [cited 27 Jul. 2015].

12 Approved for Public Release. Case Number: 88ABW-2015-5959

AGREE
Assume Guarantee REasoning Environment

• Assume-Guarantee Contract - Verifiable set of Assumptions and Guarantees that

abstracts the behavior of a system component implementation

• Assumptions

Constraints over what

a component expects to see

from its environment

• Guarantees

Constraints over how a

component behaves in

response to its environment

13 Approved for Public Release. Case Number: 88ABW-2015-5959

Compositional Verification

• A series of techniques to allow for systems

to be decomposed into less complex

modules to be enforce a hierarchical

structure that can be leveraged for

compositional techniques

• Systems can be hierarchically organized

– Requirements vs. architectural design

must be a matter of perspective

– Need better support for N-level

decompositions for requirements

and architectural design

1

1. Whalen, Michael W., et al. “Your “What” Is My “How”: Iteration and Hierarchy in System Design.”
Software, IEEE 30.2 (2013): 54-60.

14 Approved for Public Release. Case Number: 88ABW-2015-5959

Model Development

Cumulative Evidence Through Research,

Developmental, and Operational Test

15 Approved for Public Release. Case Number: 88ABW-2015-5959

Introduce Simulink and SLDV

• Uses formal methods to find violations of

design properties and assumptions

• Formal Analysis techniques from:

– Prover Plug-In

– Polyspace formal analysis engine from MathWorks

16 Approved for Public Release. Case Number: 88ABW-2015-5959

SLDV Analysis

Property Model

Property

Model

Property

Blocks

17 Approved for Public Release. Case Number: 88ABW-2015-5959

Requirements Traceability

Requirement - SpeAR Property

Architecture - AGREE Guarantee

Modeling - Simulink Design Verifier Property

«cad model»

rev1

Bob

«analysis model»

rev1

Mary

«arch model»

rev1

MLM autonomy perspective

starts with MLM framework

Model Lifecycle Management Perspective

SysML Representation of Autonomous System and

Autonomous System Development

- Building on the MLM

framework

- Nominal autonomous system

modeled in SysML (Rhapsody

example)

3/7/2016 19

- UML Test Protocol or similar utility is used

- Enables efficient pairing of requirements, test

straps, procedures, reports, and other artifacts with

each member of a product family

- Models are executable within modeling

environment at chosen level of fidelity

Basic example of Autonomous Systems T&E in

MBE context

 Basic Machine Learning algorithm hosted in Simulink

 Data sets for nominal autonomous system developed

 Simulink components integrated within Rhapsody (SysML)

 Model executed in the SysML environment

 SysML test utilities placed around test and test results
– IBM Test Conductor or potentially RQM wrapper

 Systems trained with different data sets behaved differently

 MBE considerations
– Configuration management, Data management

– Flexibility, product family architecture support

– Training Data is paired with the autonomous system

 Ability to trace system development back to the training data set used

Autonomous systems development requires

additional MBSE considerations

3/7/2016 20

21 Approved for Public Release. Case Number: 88ABW-2015-5959

Summary

• Discovery of critical flaws early in the design process can save time

and money

• Formal requirement traceability throughout design process

• Composability for reuse and modular verification

• Autonomous systems development requires additional MBSE

considerations

22 Approved for Public Release. Case Number: 88ABW-2015-5959

Future Directions of Work

• Continued research in the Development Process
– Requirements

• Realizability arguments could identify early conflicts

• Natural language masking of formal representations

– Architecture
• Abstraction of different compositional levels across different teams

– Modeling
• Bounding nonlinear behavior within discrete defined systems

• Assurance Case Construction
– Utilize the artifacts from the Development Process to provide evidence of behavior

• Move the formulation forward with these artifacts

• Implementing the Development Process on more complex systems
– Testing the scalability of the techniques

– Designing challenges that approach the complexity of Air Force domain systems

– Potentially build on MBSE – autonomy structure

• Run-time Assurance for nonlinear autonomy
– If we can’t formally prove or test can we bound?

– How can we safely bound a system?

Copyright © 2016. Unpublished Work. Raytheon Company.

Questions?

aaron.fifarek.ctr@us.af.mil

jonathan.hoffman.2@us.af.mil

mknolan@raytheon.com

