Controlling Composition C-4 Processing Parameters and Physical Properties to Predict Energy Output Performance Results of M112 Demolition Charges NDIA IMEMTS 2016 Nashville, Tennessee

Dr. Jeremy Headrick R&D Analytical Chemist September 15, 2016

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

Briefing Outline

- Background
- Modified Energy Output Testing
 - Results
 - Process Capability
 - Analysis Input/Output Issues
- M112 Block Variability
 - Results
 - Analysis
- Production Process Variability
 - Results
 - Analysis
- Conclusions

Background

- Composition C-4 is a white plastic-bonded explosive material that can be molded and shaped by hand
- Composition C-4 is a legacy explosive formulation with decades of use.
 - Contains: RDX, High molecular weight polyisobutylene (PIB), Dioctyladipate (DOA), Lightweight process oil (Oil)

Non-Export Control Information – Releasable to Foreign Persons (Export Reference)

Background

- Due to its exceptionally high brisance characteristics, (The shattering capability of a high explosive determined mainly by its detonation pressure.) Composition C-4 is mainly used for demolition purposes
 - M112 Demolition Charge
 - M183 Demolition Kit
 - MICLIC
 - M18A1 Claymore Mine

OSI_IMEM_2016-07

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

4

MOD EOF setup

- The Energy Output Test is the standard test method to evaluate Composition C-4 in the M112 Demolition Block configuration. The test measures the effectiveness of the explosive against a steel witness plate.
- Procedure: (MIL-DTL-50523A)
 - 0.5 x 1.5 x 10.0 inch cut M112 block
 - 1.0 x 10.0 x 10.0 inch ASTM A36 steel witness plate
 - Center prime with M6 blasting cap covered with 0.5 x 1.0 x 4.0 inch tab of Composition C-4, secure with tape
 - PASS = Plate cut completely into two (2) sections
- The testing at HSAAP utilized the exact setup listed in the Procedure above with the exception of the 0.5 inch dimension of the cut M112 block. This dimension was variable in our testing and was modified up/down by a 0.03 inch spacer based on the preceding test. Testing was conducted per the Bruceton 50% analysis using an approximate 5 shot pre-test to establish the GO/NOGO threshold.

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

NSPIRED

MOD EOF - PASS/FAIL Photos

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee $\ensuremath{\textcircled{}}$ 2016 BAE Systems

MOD EOF Results

- 19 Batches tested using Modified Energy Output and calculated Bruceton 50% point
- 1 Batch replicated 5 times
- Overall mean = 0.378 inches for the 50% point of all tested batches.

Non-Export Control Information – Releasable to Foreign Persons (Export Reference) BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

MOD EOF Process Capability (Based on 50% Point)

- 4.58 % of tested blocks should fail MIL-DTL-50523A. (Based on 24 batches tested and 50% point values)
- 1.0992 batches out of the 24 should fail.
- Actual results showed that two (2) batches did fail.
 - Batch F and Batch A-4 both had a calculated 50% point above 0.500 inches in height which is indicative of a probable failure.

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

INSPIRED

WORM

Input Comparison– Batch E & F

Non-Export Control Information - Releasable to Foreign Persons (Export Reference)

BAE SYSTEMS INSPIRED

WORK

Input Comparison– Batch E & F

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

BAE S'

INSPIRED

WORK

C-4 M112 Block Composition % RDX

C-4 Batch	Block	1 st Third	2 nd Third	3 rd Third	AVG	STDDEV	RANGE
E	15	89.41	88.94	89.22	89.08	0.20	0.28
E	2	89.45	89.60	89.4	89.48	0.10	0.20
F	22	89.44	89.96	89.75	89.72	0.26	0.52
F	2	89.24	89.27	89.19	89.23	0.04	0.08

Non-Export Control Information – Releasable to Foreign Persons (Export Reference) BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee $\ensuremath{\textcircled{}}$ 2016 BAE Systems

Batch F Overlay

OSI_IMEM_2016-07

Batch E Overlay

d(0	.1):	18.514	um	d(0.5): 1	34.782 um		d(0.9):	334.893	um
	Volume (%)	8 7 6 4 3 2 1							
		8.0	01	0.1 1 Particle	10 Size (um)	100	1000 300	00	
	Blo	ock 15	(0.30 in)	D(0.1)	D(0.	5)	D((0.9)	-1
		1 st T	hird	16.369	117.4	186	296	.263	
		2 nd T	hird	16.746	131.1	153	325	.246	
		3 rd T	hird	15.380	122.8	301	310	.173	
	Bl	ock 2 (0.43 in)	D(0.1)	D(0.	5)	D((0.9)	
		1 st T	hird	24.448	143.9	910	340	.795	
		2 nd T	hird	17.297	131.1	L93	337	.362	
		3 rd T	hird	12.261	127.3	317	326	.390	

PSD comparison

F Block 2 (0.45 in)	D(0.1)	D(0.5)	D(0.9)
1 st Third	12.811	85.272	226.807
2 nd Third	12.549	87.585	236.891
3 rd Third	12.865	79.517	263.230
F Block 22 (0.63 in)	D(0.1)	D(0.5)	D(0.9)
1 st Third	19.371	132.833	304.517
2 nd Third	22.801	148.126	329.931
3 rd Third	24.130	142.962	334.944
E Block 15 (0.30 in)	D(0.1)	D(0.5)	D(0.9)
1 st Third	16.369	117.486	296.263
2 nd Third	16.746	131.153	325.246
3 rd Third	15.380	122.801	310.173
E Block 2 (0.43 in)	D(0.1)	D(0.5)	D(0.9)
1 st Third	24.448	143.910	340.795
1 st Third 2 nd Third	24.448 17.297	143.910 131.193	340.795 337.362

M112 Variability – All Means (RDX,% & 10th Percentile)

OSI_IMEM_2016-07

BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee $\ensuremath{\textcircled{}}$ 2016 BAE Systems

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

M112 Variability – All Means (50th & 90th Percentile)

Non-Export Control Information - Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

16

M112 Block Variability (Within Block)

Batches A-1 thru T Within Block

	MAX StDev
RDX, %	0.563
10 th	1.405 μ
50 th	3.157 μ
90 th	18.240 μ

Non-Export Control Information – Releasable to Foreign Persons (Export Reference)

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

M112 Block Variability (Between Block)

Non-Export Control Information – Releasable to Foreign Persons (Export Reference) BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

Blocks 1 thru 30 Between Block

	MAX StDev
RDX, %	0.529
10 th	1.122 μ
50 th	3.086 μ
90 th	11.420 μ

M112 Block Variability (Between Batches)

Batches A-1 thru T MAX StDev RDX, % 0.473 10th 0.9228 μ 50th 2.213 μ 90th 15.160 μ

Test for Equal Variances: 90th Percentile vs IMEM

Non-Export Control Information - Releasable to Foreign Persons

(Export Reference) 2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee

OSI_IMEM_2016-07

© 2016 BAE Systems

M112 Block Variability (Within & Between Summary)

All Ba	tches			
	Within Block		Between Batch MAX StDev	
MAX StDev		MAX StDev		
RDX, %	0.563	0.529	0.473	
10 th	1.405 μ	1.122 μ	0.9228 µ	
50 th	3.157 μ	3.086 μ	2.213 μ	
90 th	18.240 μ	11.420 μ	15.160 μ	

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

20

M112 Modified EOF – Process Capability

- 6.90 % of tested blocks should fail MIL-DTL-50523A. (Based on 720 blocks tested)
- 1.656 batches out of the 24 should fail.
- Actual results showed that two (2) batches did fail.
 - Batch F and Batch A-4 both had a calculated 50% point above 0.500 inches in height which is indicative of a probable failure.

Process Capability Report for Thick AVG

Non-Export Control Information – Releasable to Foreign Persons (Export Reference) BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee $\ensuremath{\textcircled{}}$ 2016 BAE Systems

Production Variability – All Means (RDX,% & 10th Percentile)

Percen	tile						
	Anderson-Darling Normalit						
	A-Squared	0.47					
	P-Value	0.245					
	Mean	11.816					
	StDev	1.600					
	Variance	2.560					
	Skewness	-0.220637					
	Kurtosis	0.243059					
	N	174					
	Minimum	6.553					
	1st Quartile	10.794					
	Median	11.896					
	3rd Quartile	12.797					
	Maximum	15.229					
	95% Confidence Ir	nterval for Mean					
15.0	11.577	12.056					
	95% Confidence Int	erval for Media					
	11.620	12.056					
	95% Confidence In	nterval for StDev					
	1.448	1.788					

12.1

BAE SYST INSPIRED WORK

Non-Export Control Information - Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

22

Production Variability – All Means (50th & 90th Percentile)

OSI_IMEM_2016-07

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

Production Variability (Within Nutsches)

Non-Export Control Information – Releasable to Foreign Persons (Export Reference)

OSI_IMEM_2016-07

BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

Production Variability (Within Batch or Between Nutsches)

Non-Export Control Information – Releasable to Foreign Persons (Export Reference)

OSI_IMEM_2016-07

BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

Production Variability (Between Batches)

All Batches (Between)					
	MAX StDev				
RDX, %	0.3550 g				
10 th	1.600 μ				
50 th	3.028 μ				
90 th	10.688 μ				

Non-Export Control Information – Releasable to Foreign Persons (Export Reference) BAE SYSTEMS

2016 Insensitive Munitions & Energetic Materials Technology Symposium, Nashville, Tennessee © 2016 BAE Systems

Process Variability (Within & Between Summary)

tches			
Within Nutsche	Between Nutsche	Between Batch	
MAX StDev		MAX StDev	
0.5268 g	0.4980 g	0.3550 g	
2.041 μ	1.376 μ	1.600 μ	
4.853 μ	3.171 μ	3.028 μ	
19.650 μ	12.800 μ	10.688 μ	
	tches Within Nutsche MAX StDev 0.5268 g 2.041 μ 4.853 μ 19.650 μ	tchesBetween NutscheNutscheBetween NutscheMAX StDevMAX StDev0.5268 g0.4980 g2.041 μ1.376 μ4.853 μ3.171 μ19.650 μ12.800 μ	

Non-Export Control Information – Releasable to Foreign Persons

(Export Reference)

OSI_IMEM_2016-07

27

Variability Comparison (Within & Between Summary)

	Within Nutsche	Within Block		Between Nutsche	Between Block		Between Batch	Between Batch	
	MAX StDev	MAX StDev	Absolute Diff.	MAX StDev	MAX StDev	Absolute Diff.	MAX StDev	MAX StDev	Absolute Diff.
RDX, %	0.5268 g	0.5630 g	0.0362 g	0.4980 g	0.5290 g	0.0310 g	0.3550 g	0.4730 g	0.118 g
10 th	2.041 µ	1.405 µ	0.636 µ	1.376 µ	1.122 µ	0.254 µ	1.600 µ	0.9228 µ	0.6772 µ
50 th	4.853 µ	3.157 µ	1.696 µ	3.171 µ	3.086 µ	0.085 µ	3.028 µ	2.213 µ	0.815 µ
90 th	19.650 µ	18.240 µ	1.410 µ	12.800 µ	11.420 µ	1.380 µ	10.688 µ	15.160 µ	4.472 µ

(Export Reference)

28

Conclusion / Recommendations / Summary

- Within Nutsche and Block variability is negligible
- Between Nutsche and Block variability is negligible
- Between Batch variability is where the majority of the error is coming from
- Modified EOF test should have been conducted on a 100% pass/fail test instead of Bruceton 50% point (Better matching the Energy Output Test in the specification)
- Better control of input materials will improve consistency of the Composition C-4, within and between batches

OSI IMEM 2016-07

Acknowledgements

Dr. Tess Kirchner Mr. Matt Hathaway Mr. Chris Long Mr. Gary Sizemore Mrs. Sara Lowry Mrs. Kelly Smith Mr. Brian Alexander Mr. Todd Dye Mr. Tracy Kelly

> Non-Export Control Information – Releasable to Foreign Persons (Export Reference)

BAE SYSTEMS