GrIMEx: Development of a Novel, Green IM Comp B Replacement NDIA IMEMTS 2016

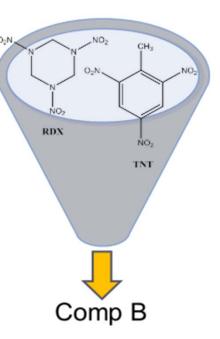
Dr. David Price Holston R&D Manager BAE Systems Ordnance Systems Inc. Holston Army Ammunition Plant, Kingsport TN, USA

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12) Abstract # 18770

Acknowledgements

COD · EPA · DOE	Strategic Environmental Research and Development Program Robin Nissan -Program Funding
ARMY INSTITUTE OF PUBLIC HEALTH	US ARMY Public Health Command Dr. Mark Johnson and Dr. William Eck USA Public Health Command (USAPHC) -Providing expertise and testing in toxicology
BAE SYSTEMS INSPIRED WORK	BAE SYSTEMS Dr. Jacob Morris, Dr. Neil Tucker, Dr. Sarah Headrick, Jim Phillips, Brian Alexander, Matt Hathaway, Dr. Jeremy Headrick, Robyn Wilmoth, Kelly Guntrum, Chris Long, Dr. Tess Kirchner -Synthesis, Formulation and Testing


GrIMEx (Green IM Explosive)

Technology Focus

 To develop a novel IM Comp B replacement formulation containing novel, environmentally favorable TNT and RDX replacements.

Research Objectives

- The design and development of new synthesis routes for novel TNT and RDX replacements candidates that will be (relative to TNT or RDX):
 - Less sensitive to unplanned stimuli
 - Of comparable performance
 - Less toxic
 - Made through environmentally acceptable routes
- The design and development of new melt-pour Comp B replacement candidates that will be:
 - More IM-compliant than Comp B
 - Less toxic
 - Of comparable performance

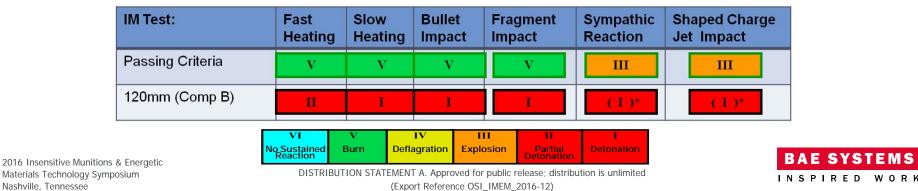
2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)

What's wrong with Comp B?

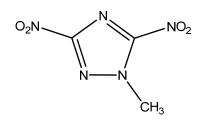
Environmental:

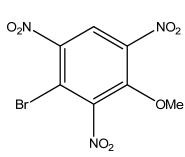
•DoD utilizes a large amount of Comp B in artillery and mortar rounds •RDX and TNT have known toxicity concerns and contaminate soil and groundwater

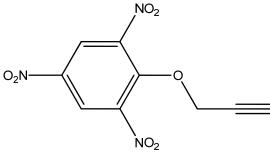

 RDX has become an undesirable component of new munitions formulations because it causes neurological effects (i.e. convulsions) in personnel, and the U.S. EPA lists RDX as a possible human carcinogen.

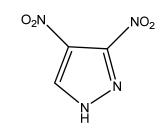
•RDX has also become an environmental contaminant of concern because of residues from its use in munitions and from manufacturing.

Performance:


Nashville, Tennessee


•Comp B does not meet current IM (Insensitive Munitions) requirements mandated by DoD




Both RDX and TNT contribute to the lack of IM

Potential TNT replacements

DNMT

TNBA

PiPE

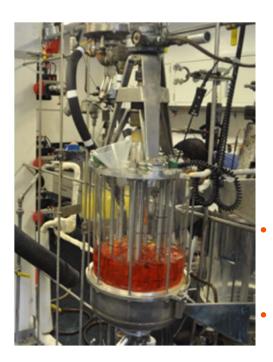
DNP

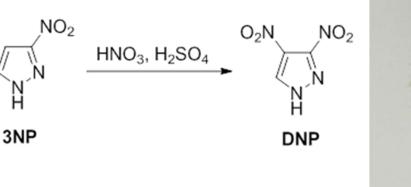
Compound	Pros	Cons
DNMT 🗶	Close to Comp B performance, Insensitive	Low synthetic yields, Use of methylhydrazine
PiPE	TNT performance, Predicted insensitivity	Starting material toxicity, insufficient characterization
тива	Reasonable maturity, Insensitive, One synthetic step	Effect of Bromide atom on performance unknown
DNP	> Comp B performance, synthesis already developed	Acidic proton?

Ingredient moving forward in program

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

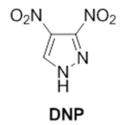
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)




Potential RDX replacements NO_2 O_2N NO_2 $N - NO_2$ HN $O_2N_{\rm v}$ NO₂ -NO2 $\dot{N} - NO_2$ $O_2 N - \dot{N}$ HN N-NO₂ O_2N-N $O_2 N^{-N}$ NH_2 H_2N O_2N O_2N^{-1} NO2 NOc NO₂ $O_2 N NO_2$ DNGU LLM-105 HMX **BiNTO HK-56** HCO Compound Pros Cons Less toxic and env. persistent than Slightly more sensitive than RDX HMX RDX, Higher power than RDX Low sensitivity, inexpensive DNGU Unconfirmed performance, particle morphology LLM-105 Insensitive, good performance particle morphology and size **BINTO** Reduced water solubility, NTO as Unconfirmed performance, material starting material unstable **HCO** Similar to TNAZ, High density Laborious synthesis Potential for low-cost and sensitivity **HK-56** Unconfirmed performance, immature synthesis route

Ingredient moving forward in program

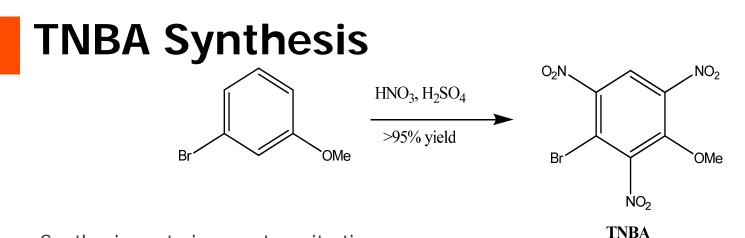
DNP Synthesis


7

- DNP (3,4-dinitropyrazole) is technically mature, and has been consistently synthesized on the 5 lb scale with 65% crude yield and 99.9% HPLC purity but with ~5% remaining acids.
- With new purification process, yield increased to ~52%. Purity was greater than 99% by HPLC. Sulfate content was less than 0.02%.
- Previous purification methods involved extractions and vacuum. Current efforts are focused on isolation and purification processes amenable to scale-up.

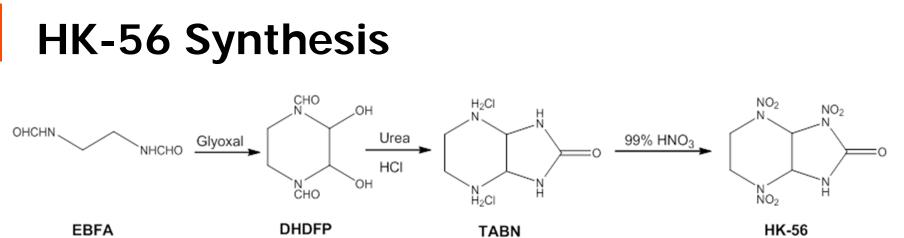
•Technical Maturity: Solid synthesis route, isolation and purification needs work

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee


DNP Skin Sensitization Potential

- DNP sample was sent to USAPHC for Dermal Testing
- "DNP was found to elicit a low-to-mild hapten formation response by DPRA (direct peptide reactivity assay). Analysis of cysteine alone produces a mild response (percent depletion of peptide), but when coupled with data for the lysine-containing peptide chain (percent depletion of peptide), the overall response is considered to be low. Thus, DNP is found to be mildly sensitizing by analysis with DPRA."
- "The mild reaction by DPRA indicates that exposure to DNP in an occupational setting should be considered generally safe with appropriate precautions. Sensitization to the compound could potentially occur over an extended period of exposure, but with adequate PPE, this can be mitigated. The DPRA is best analyzed in conjunction with additional *in vitro* skin sensitization assays and in correlation with *in silico* analysis of the physical and chemical properties in order to accurately predict its sensitizing potential. Alternatively, further *in vivo* sensitization testing could be conducted if development of the compound is continued."

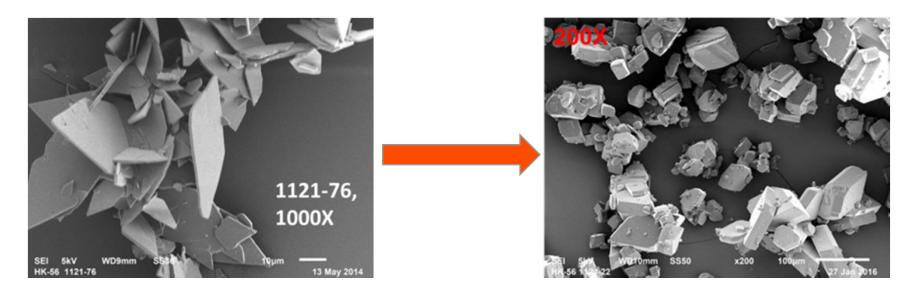
Proper Engineering Controls and PPE for safe handling



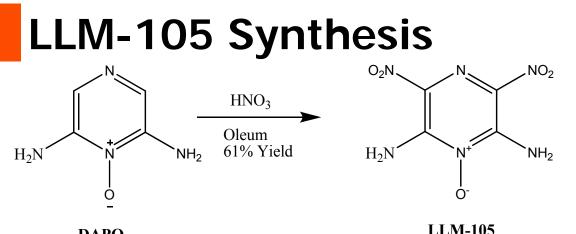
- Synthesis route is one step nitration
 - Crystalline solid precipitates from reaction in high yield
- Robust Process:
 - Many nitrations have been performed
 - Yields ranged from 96.5% to 100%
 - Purity ranged from 98.69% to 99.92%
 - Preliminary data show TNBA has a shock sensitivity (NOL LSGT) of 164 cards
 - TNT is usually ~130 cards
 - Could be due to high degree of crystallinity, may improve with solid fills added (or better casting)

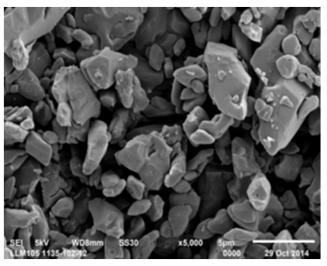
•Technical Maturity: Minimal optimization needed. Need to get preliminary performance testing to verify detonation velocity.

INSPIRED



- Simple condensation to DHDFP (yields of 68%)
- TABN reaction completed up to the 2 L scale (yields of 50-70%)
- HK-56 yields of ~40%
- A total of 1 lb of HK-56 has been synthesized.


- Particle size and shape of the HK-56 will be important for future formulation activities
 - HK-56 particle shape appears promising (no needles)
 - Particle size was originally approximately 5-10 microns



HK-56 Particle Improvements

- Through a novel reaction quenching method, the particle size grows and the particle shape improves.
 - This method allows the HK-56 to crystallize slowly.
 - This yields crystals that are more cubic.
- Average particle size is about an order of magnitude larger than original process material



- DAPO
- Final stir in LLM-105 formation complicated by significant foaming.
- Off-gassing suggests consumption of the product or intermediates.
- Reduced HNO₃ loading and a reduced final stir temperature provides a modest yield improvement (4-5%).
- The reduced HNO₃ loading and reduced final stir temperature also results in less troublesome headspace foaming.
- Extensive robustness testing revealed reduced oleum loading and extended final stir temperatures above 30 °C as the only two major ٠ concerns affecting yield.

•Technical Maturity: Robust synthesis process. Particle size is rather small.

DNGU Particle Size Development

DNGU

glycoluril

- Previous process afforded small particle size DNGU
 - <10 microns</p>
- Specific nitration conditions needed to promote desired particle size growth.
- Higher temperature final stir contributes to larger particle size growth.
 - >100 microns
- Purity is typically greater than 99%.
- Residual acid is typically ~0.1%.

SEI 2.0kV WD8mm S35 x100 100µm DNGU 1136-059 TO Ct 2014

•Technical Maturity: Larger particles generated with novel nitration process .

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12) BAE SYSTEMS

VTS Compatibility

	NEAT	TNBA	DNMT	PiPE	DNP	DNGU	LLM-105	HK-56	НМХ
NEAT		0.5273	0.785	2.8188	2.6083	0.4744	0.4348	0.2857	0.0699
TNBA	0.5273		\mathbf{i}	$\left \right\rangle$	$\left \right\rangle$	0.4569	0.7201	0.4146	0.2323
DNMT	0.785	$\left \right\rangle$		$\left \right\rangle$	$\left \right\rangle$		0.5184	0.1175	
PiPE	2.8188	$\left \right\rangle$	$\left \right\rangle$		$\left \right\rangle$	1.5223	1.7547		1.3033
DNP	2.6083	$\left \right\rangle$	$\left \right\rangle$	$\left \right\rangle$		2.0563	1.6351	0.2971	
DNGU	0.4744	0.4569		1.5223	2.0563		0.6147	0.4653	
LLM-105	0.4348	0.7201	0.5184	1.7547	1.6351	0.6147			0.3372
HK-56	0.2857	0.4146	0.1175		0.2971	0.4653			0.226
НМХ	0.0699	0.2323		1.3033			0.3372	0.226	

- STANAG 4147 Test 1B states that when 2.5 grams of material A is mixed with 2.5 grams of material B, the total gas evolved after 40 hrs at 100° C must be less than 5 cc in order to be deemed compatible.
- All materials were compatible as tested.

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

Comparative Data

				RDX repla	cements					
	TNBA	DNMT	PiPE	DNP	TNT	DNGU	LLM-105	HK-56	FEM- HMX	RDX
SEM	\checkmark	\checkmark						\checkmark		
Impact, cm	(Naval) 79.43	>85	56.7	55.0	88	(Naval) 112.20	50.0	35.0	30.7	45
Impact Std, cm	23.3	45.0	50.8	39.0		16.7	39.0	42.5	-	
Friction, N	70.0	166.0	>360	246.0	216	>360	>360	>360	183.5	144
Friction Std, N	144.0	142.7	144.0	164.0		164.0	164.0	-	-	
ESD, J	0.2900	0.0425	0.2113	0.2625	>0.25	0.0366	0.0366	0.0829	0.1050	<0.25
particle size	0	0	0	0		120	4	20	5	
det velocity	6.571	7932	6.929	8251	7180	8878	8667	8628	9246	8862
det pressure	23.98	25.97	21.96	29.24	20.02	35.64	32.72	32.82	37.19	33.46
V/V0 7.20	-5.87	-7.05	-5.91	-7.93	-5.42	-8.33	-7.56	-8.49	-9.66	-9.01
Oxygen balance	-44.72	-32.35	-80.85	-30.37	-73.96	-27.57	-37.02	-37.52	-21.61	-21.61
Density, g/cm3	1.948	1.66	1.612	1.773	1.654	1.941	1.881	1.85	1.91	1.816
melt temp	97	97	100	87		0	0	0	0	
heat of formation	18.88	122.8	227.4	120.5	-63.2	-41.54	-13	100.6	75	70

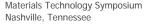
- This data was used in the downselect process for ingredients.
- Performance data was calculated using Cheetah 7.0.

Overview of Completed Tox Work

- Toxicology Assessment being performed in accordance with USAPHC Phased Approach concept ASTM E-2552-08
- Profiles completed for 13 candidate compounds
- Recommendations included Ames testing, aquatic toxicity testing, and biodegradation testing

2	Compound	Oral	Inhalation	Dermal	Ocular	Reproduction/ Development	Mutagenicity	Comments
,	TNBA	Moderate	Low	Moderate	Low	Moderate	High	
	PiPE	High	Low	Moderate	Low	Moderate	Low	Possible carcinogen
	DNMT	Low	Low	Moderate	Low	Low	High	
	DNP	Moderate	Low	Moderate	Low	Low	High	
8	TNT	Moderate	Low	Moderate	Moderate	Low	High	Suspect human carcinogen
	DNGU	High	Moderate	Moderate	Low	Moderate	Low	
	LLM-105	High	Moderate	Moderate	Moderate	Moderate	High	Possible carcinogen
	DADNP	Low	Low	Moderate	Low	Low	High	
	NANTO	Low	Low	Moderate	Moderate	Low	High	
	HNDO	High	Low	Moderate	Moderate	Moderate	Low	
	BNTO	Low	Low	Moderate	Moderate	Low	Unknown	
	BiNTO	Low	Low	Moderate	Moderate	Low	High	
	HK-56	High	Low	Low	Low	Moderate	High	
	RDX	Moderate	Unknown	Low	Low	Low	Moderate	Carcinogenicity only observed in female mice.

Overview of Completed Eco-Tox Work


Compound	Green algae	Daphnia	- Fish	Earthworms	Transport	Persistence	Bioaccumulation
TNBA	Moderate	Low	Low	Unknown	Low	High	Low
PiPE	Low	Low	Low	Unknown	Low	High	Low
DNMT	Low	Low	Low	Unknown	High	High	Low
DNP	Low	Low	Low	Unknown	High	High	Low
TNT	Low	Low	Moderate	High	Moderate	High	Low
DNGU	Low	Low	Low	Low	High	High	Low
LLM-105	Low	Low	Low	Unknown	High	High	Low
HNDO	Low	Low	Low	Low	High	High	Low
BNTO	Low	Low	Low	Unknown	High	High	Low
BiNTO	Low	Low	Low	Unknown	High	High	Low
DADNP	Low	Low	Low	Unknown	High	High	Low
NANTO	Low	Low	Low	Unknown	Moderate	High	Low
HK-56	Low	Low	Low	Unknown	High	High	Low
RDX	Low	Low	Low	Unknown	Moderate	High	High (plants)

- Tox and Eco-Tox indicate likely differences between candidates.
- PiPE, DNGU, and HCO could be least toxic candidates
- TNBA, PiPE, DNGU, and HCO could have least Eco-toxicity

VP (torr; estimated) $\Delta H_{vap (est)}$ 25°C 100°C Sample 70°C kJ/mol LLM-105 8.50 x 10⁻¹⁶ 9.15 x 10⁻¹³ 50.4 x 10⁻¹⁰ 163.8 2.06 x 10⁻¹⁰ DNGU 2.54 x 10⁻¹³ 5.40 x 10⁻⁰⁸ 151.2 1.13 x 10⁻⁰⁹ 2.35 x 10⁻⁰⁷ 147.3 **HK-56** 1.52 x 10⁻¹² DNP 1.57 x 10⁻⁰⁸ 2.42 x 10⁻¹¹ 2.72 x 10⁻⁰⁶ 141.4 TNBA 6.66 x 10⁻⁰⁵ 1.59 x 10⁻⁰⁷ 3.08 x 10⁻⁰³ 121.7 TNT* 5.50 x 10⁻⁰⁶ 2.31 x 10⁻⁰³ 5.77 x 10⁻⁰² 114.1 RDX* 3.30 x 10⁻⁰⁹ 2.76 x 10⁻⁰⁶ 9.92 x 10⁻⁰⁵ 127.1 HMX* 174.7 3.01 x 10⁻¹⁵ 3.14 x 10⁻¹¹ 4.37 x 10⁻⁰⁹ 120 **TNBA** 100 DNP HK-56 80-DNGU LLM-105 Weight (%) 60-40.

Vapor Pressures

- Ingredients were sent to Dr. Rose Pesce-Rodriguez at ARL for Kow, Koc, water solubility and vapor pressure testing.
- DNP and TNBA have lower vapor pressures than TNT:
 - Good news for melt-pour materials

100

200

Temperature (*C)

20-

0

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)

500

Melt Kettle

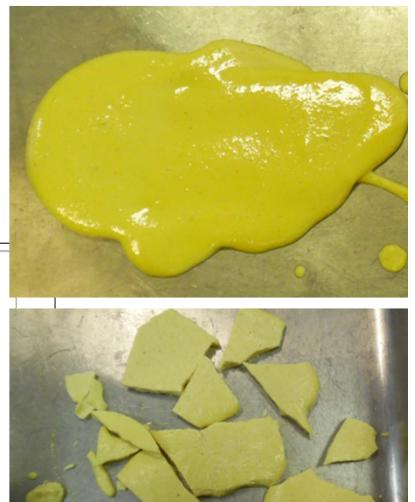
- BAE has traditionally used a melt kettle for melt pour formulations development that operates with approximately 500 grams of material (vessel on left).
- With new ingredients in limited supply, we cannot afford to experimentally formulate at this scale.
- Therefore, BAE designed and fabricated a melt kettle capable of formulating 50 gram batches in an effort to consume less of the precious novel materials (vessel on right).

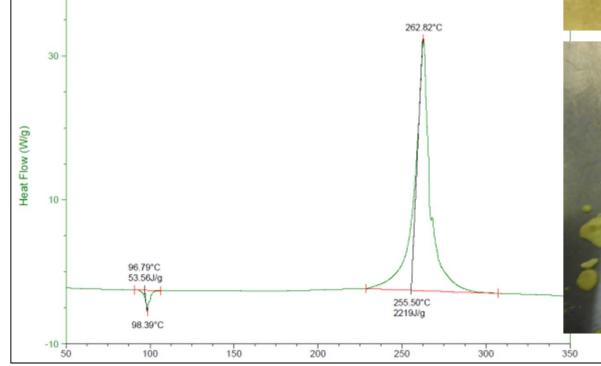
2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)

INSPIRED WORK

19

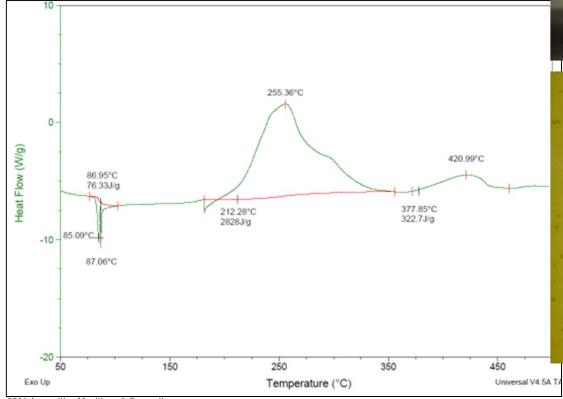

GrIMEx Performance Calculations & Sensitivity Data


- TNBA + DNGU (+ FEM HMX): Lowest cost Comp B replacement
- DNP + FEM-HMX + DNGU + LLM-105: High performance
 - LLM-105 may help with cook off IM response
- Target formulations are evolving

Formulation	Pcj (Cheetah 7.0)	V/Vo (7.20) (Cheetah 7.0)	Impact	Friction
TNBA/DNGU/HFEM	24.876	-6.78	45	331
TNBA/HMX/HFEM	31.800	-8.40	26	331
DNP/DNGU/LLM105/HFEM	31.301	-7.97	82*	322
DNP/DNGU/HFEM	32.757	-8.28	33	346
DNP/DNGU/LLM105	32.088	-8.05	35	328
Comp B	27.028	-7.55	38	150

TNBA Formulations

- TNBA/DNGU/HMX formulation shows:
 - Sharp melting point
 - Exothermic decomposition for DNGU remains unchanged


2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)

DNP Formulations

- DNP/LLM-105/HMX mixture shows:
 - sharp melting point

New exothermic decomposition appears
 >400° C, (interesting phenomenon)

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12)

GrIMEx Formulations Progress

- DNP:
- 45-50% solids loading (low melt viscosity)
- Seems to be an irritant (need good engineering controls and PPE)
- Cools slowly causing possible settling issues
- TNBA:
- Current challenge: lower solids loading (<40%)
- Achieved 34% TNBA formulation using multiple HMX classes
- Might obtain improved results with better inputs

Conclusions

- Lots of interesting synthesis development work
- Down-select has helped us focus on ingredients and target formulations
- We are looking forward to scaling up ingredients and further toxicity evaluations
- BAE Systems has commissioned a pilot plant at Holston which should better enable the scale up of these new materials
- End goal of an affordable, environmentally friendly, IM Comp B replacement is in sight.

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12) BAE SYSTEMS

Questions?

2016 Insensitive Munitions & Energetic Materials Technology Symposium Nashville, Tennessee

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited (Export Reference OSI_IMEM_2016-12) BAE SYSTEMS