

High Performance Propellant Fragment Impact Testing: Small-scale and Full-scale

Distribution Statement A Approved for public release; distribution is unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

AMRDEC

SEPT 2016

Jessica A. Stanfield, Jamie B. Neidert, <u>Eric N. Harstad</u>, Bradley W. White, and H. Keo Springer

Staggering Accomplishments...

YEARS

Limitless Possibilities

- Full-scale rocket motor assets are expensive to test. The development of predictive tools to help predict/understand the response of propellants (non-ideal explosives) would lower overall cost and provide useful IM tools.
- Goal: Predictive capabilities for IM threats on energetics in representative systems

ABVR (Army Burn to Violent Reaction)- Sub scale fragment impact tests representing full scale; data provided for M&S; component tests performed for material characterization and model calibration

- M&S- Modeling and simulation iterations to design a full scale fragment impact prediction tool; Integrated analog T&E Demo pre-test predictions
- Test and Evaluation (T&E) Analog Demo– Full scale fragment impact test with analog rocket motor; Integrated analog T&E Demo test materials & test article fabricated, test range configured and test executed

High Performance Propellant (HPP)-Ammonium Perchlorate (AP) and ٠ aluminum powder bonded by hydroxyl-terminated butadiene

Standard Configuration

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ABVR Tests Preparations for Analog T&E

•Test articles represent the dimensions and materials used for T&E Demonstration.

-4 ABVR Tests

RDECOM

- Composite panels
 3.65" thick HPP propellant slabs
 1.5" Air Gap
 Fragment Impact Velocity (4000 to 6000ft/sec)
- -4 Inert Impact Tests •Composite Panel (Bare) •Composite Panel with Insulation •Canister and Composite Panel (Bare) Canister •Fragment Impact Velocity 6000ft/sec

•Supply data to modelers for T&E demonstration predictions

AMRDE

ABVR Tests Preparations for Analog T&E

Reduction in velocity due to canister, case, and insulation material was significantly more than anticipated (see chart, 5-15% reduction).
Increasing impact velocity increased pressure reading; with the exception of the added canister

Test	Canister	Composite	Insulation	Test	Initial Impact	Velocity	Reaction	Peak
Number		Panel		Article	Velocity, ft/sec	Reduction, %	Туре	Pressure, psi
1	X				6211	7	None	N/A
2		Х			6374	5	None	N/A
3		Х	Х		6250	8	None	N/A
4	X	Х			6179	15	None	N/A
5	X			Х	6237	N/A	Burn	11
6				Х	6217	N/A	Burn	26
7				Х	5177	N/A	Burn	15
8				X	3993	N/A	Burn	4.5

Test 5

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- ALE3D multi-physics code with the PERMS reaction/burn model
 - Arbitrary Lagrangian Eulerian Three Dimensional (ALE3D) code
 - Propellant Energetic Response to Mechanical Stimuli (PERMS) material model with Equivalent Plastic Strain (EPS)-enhanced burning parameters to explore reactivity
 - Used ABVR test results to calibrate the models for Demo tests
 - Performed sensitivity studies on model parameters due to uncertainties in the HPP fragmentation response and its central role in capturing reaction violence
- CTH shock hydro-code with two propellant models
 - Initial model was Coupled Damage and Reaction with Kinetics (CDAR-K) but was not well suited to HPP material
 - Propellant Model (PMOD) was used effectively starting in 2012
 - PMOD parameters calibrated from ABVR results for Demo tests
- Material models for reactive & inert constituents were used extensively in both codes
 - ABVR-related experiments helped team to better understand physics

DECON

IM Analog Demo Rocket Motor Test AMRDEC 50

Test Number	Planned Impact Velocity, ft/sec	Bore Dimension, in	Configuration	Test Description
1	8300	2	No Canister	Baseline
2	8300	4	No Canister	Bore Variation
3	8300	2	Canister	Canister Influence

IM Analog Demo Rocket Motor Test AMRDEC 50 Diagnostics

- In-Bore Pressure Transducer
- Open Air Over-Pressure (OP) Gauges
- Breakscreens (6) near and on Test Article
 - Measure Fragment Velocity, Vo
 - Time, To, for Fragment Impact on Test Article
 - Time, T_f, for (potential) Fragment Exit
- Standard Video (3 views)
- High Speed Video (3 views)
- Still Photography
- Photodiode

• Photonic Doppler Velocimetry (PDV)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

IM Analog Demo Rocket Motor Test AMRDEC5

Test	Velocity (ft/s)	Max.@5ft OP, (psi)	In-Bore	Reaction
			Pressure, psi	Туре
1	7989	12	>10K	IV
2	8399	20	>10K	IV
3	8279	11	8400	IV

Test Number	Description	Distance, ft	Location, degree
1	Aft End of Motor	22	220
1	Dome and Case Material	35	60
1	Propellant and Case Material	95	50
1	Firebrand	249	225
1	Forward Closure	300	20
2	Aft End of Motor	33	170
2	Firebrand	230	215
2	Case Material	2	225
3	Motor and Canister (minus Forward End Cap)	N/A	N/A

RDECOM)

Test Data to Post-test M & S Results AMRDEC 50

	Case Velocity (PDV 90°	Photodiode (time to 1 st	Max. OP, Stem 4 (psi)	In-bore pressure	Penetration through Test
	probe) (It/S)	ngnt) (µsec)		(psr)	Article
<u>Test 1</u>					
Test data	43	No Data	12 at 5ft 5 at 10ft	>10K	No
СТН	140	N/A	16 at 5ft	40K	No
ALE3D	590	110	N/A	25K	No
<u>Test 2</u>					
Test data	No Data	No Data	20 at 5ft 9 at 10ft	>10K	Unknown
СТН	100	N/A	32 at 5ft	13.5K	Yes
ALE3D	295	102	N/A	13.6K	Yes
<u>Test 3</u>					
Test data	7.5	213	11 at 5ft	8400	Unknown
			5 at 10ft		
СТН	75	260	N/A	6700	No
ALE3D	280	165	N/A	6000	No

- ABVR tests provided useful velocity, pressure, and visual data to make pre-test prediction simulations for the analog demonstration rocket motor IM tests
- ABVR tests provided velocity reduction information
 - Canister reduced fragment speed by approx. 7% (from ABVR)
 - Composite with insulation reduced fragment speed by approx. 8% (from ABVR)
- Pre-test predictive simulations of the analog demonstration rocket motor tests suggested bore size would influence the violence of the reaction
 - Bore size did influence violence of the reaction
 - As anticipated, data confirmed a more violent reaction for the larger bore diameter
- Pre-test prediction modeling was important to the analog demo RM design and the test matrix

DECON

Conclusions Continued

- Canister appeared to mitigate the reaction of the motor to fragment impact
- Placement of over pressure gauges closer to target was important to provide meaningful data as suggested by simulations
- 10K in-bore pressure gauge was not rated high enough for actual pressures
- Placement and type of break screens is critical to accurate time and velocity measurements
- Refined post-test ALE3D and CTH model simulations provided values that were improvements compared to the original predictions
 - Gaps in the test data and needed improvements in the M&S technology
 - Further experimental work and modeling enhancements are needed to continue to evolve predictive capabilities

RDECON

- Lawrence Livermore –H. Keo Springer, Lara Leininger, and Tony Whitworth
- Los Alamos -Thomas Mason and Paul Butler
- Sandia Eric Harstad, Ken Chavez, and Michael Kaneshige
- AMRDEC Energetic function- Britteny Hamilton, Larry Pledger, Wayne Steelman and Glenn Hamer
- AMRDEC Aerospace Materials function-Cheryl Steele and Robert Esslinger
- AMRDEC Missile Sustainment- Justin Grissim
- AMRDEC Propulsion Technology- Joey Reed, Bill Delaney and Brian Curtis
- RTC- Jerry Webb and Justin Merritt
- Project guidance, support, and funding- Jose Gonzalez, William Ruppert, Stuart Blashill, Jamie Neidert, and Steve Collignon