

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

BENEFITS OF INSENSITIVE MUNITIONS ON STORAGE AND OPERATIONS

Benjamin Keefe

B. Stokes Fellow b.keefe@msiac.nato.int

Martijn M. Van der Voort

Munitions Safety, Transport & Storage TSO +32 (0)2 707 5426 m.vandervoort@msiac.nato.int

2016 INSENSITIVE MUNITIONS & ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM

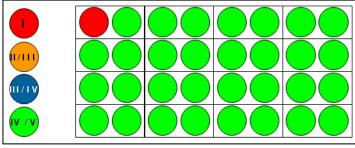
- Introduction
- IM Assessment
- IM Assessment vs. Reality
- Quantity Distance (QDs) Background
- IM QDs
- IM and Risk
- IM and Risk-to-Stock
- Conclusions & Recommendations

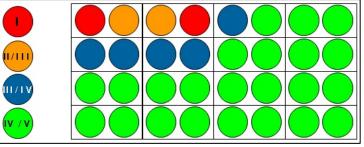
- Munition spends large portion of life in storage or on operations
- Full report MSIAC Open Report O-169

- Two assessment test groups from four documents:
- Hazard Classification:
 - Recommendations on the Transport of Dangerous Goods: Model Regulations (UN Orange Book) used to assess HD1.6
 - AASTP-3 used to assess SsD1.2.3 and matches UN Orange Book HD1.6
- IM assessment testing:
 - AOP-39: Guidance on the Assessment and Development of IM & STANAG 4439
 - Not associated with a specific HD but is used in SsD1.2.3

MAIN 'IM' TESTING

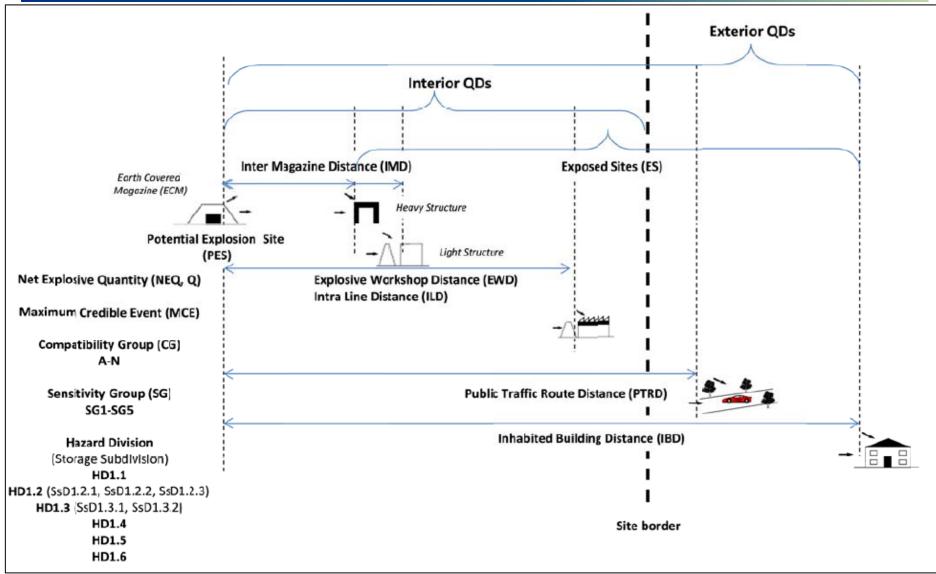
AASTP-3: SsD1.2.3	UN Orange Book: HD1.6	AOP-39
Test Series 6 Tests	Test Series 7 Substance Tests (a to f)	Test Series 6 Tests
Liquid Fuel/External Fire	Test series 7g - 1.6 article external fire test	Liquid Fuel/External Fire
(STANAG 4240)		(STANAG 4240)
Slow Heating	Test series 7h - 1.6 article slow cook-off test	Slow Heating
(STANAG 4382)		(STANAG 4382)
Bullet Impact	Test series 7j - 1.6 article bullet impact test	Bullet Impact
(STANAG 4241)		(STANAG 4241)
Sympathetic Detonation	Test series 7k - 1.6 article stack test	Sympathetic Detonation
(STANAG 4396)		(STANAG 4396)
	Test series 7I - 1.6 article fragment impact test	Fragment Impact
		(STANAG 4496)
		Shaped Charge Jet
		(STANAG 4526)


- Green: Common across all assessments.
- Yellow: Not in SsD1.2.3 assessment.
- Blue: Not in HD1.6 assessment.


- IM may not prevent the accidents **BUT** would reduce the consequences compared to conventional munitions.
- Safety systems need to be of a high level.
- A case study of the USS Forrestal Fire in 1967 was conducted.

- Reality is much more complex than IM assessments
 - Ageing
 - Larger storage configurations
- Recent work implies ageing has little impact on IM but based on limited evidence
- Storage safety based on IM (transport based) tests
 - Should be validated by large storage configuration testing

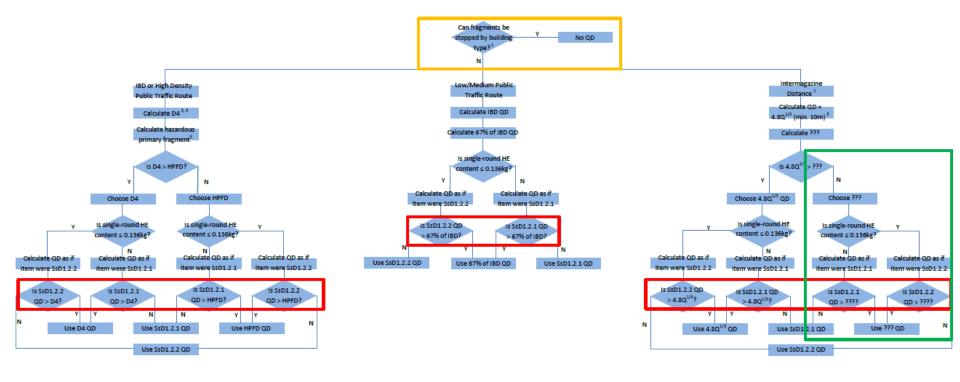
Single Shell Detonation.


Multiple Shell Detonation.

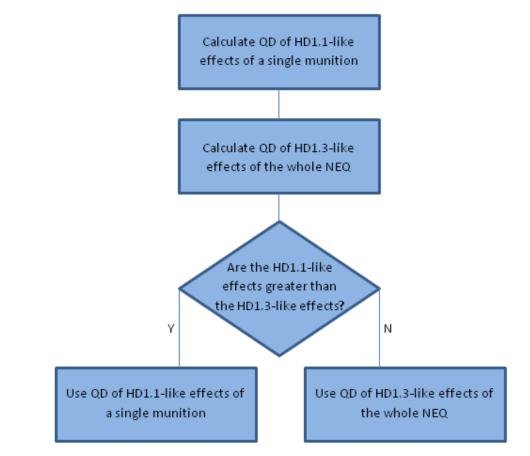
MSIAC Unclassified

QDs Background

Supporting Munitions Safety



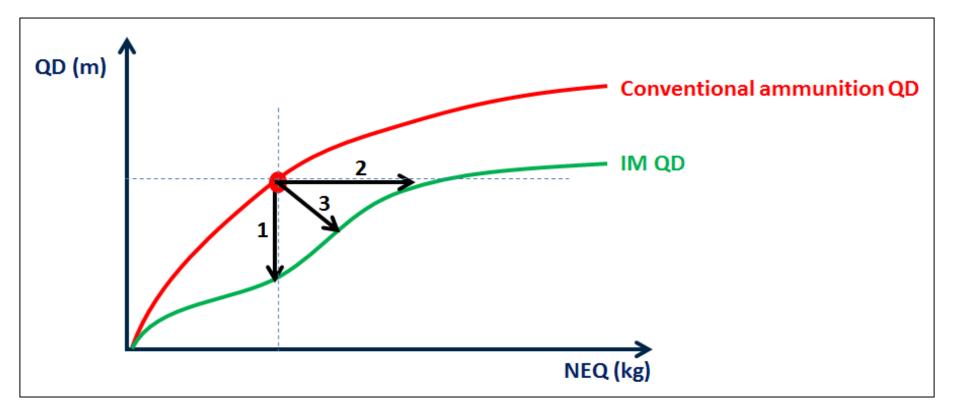
- QDs for HD1.6 and SsD1.2.3
 - Similar approach
 - Whichever gives the largest contribution of
 - Burn of the total NEQ
 - Detonation of a single article (also known as Maximum Credible Event (MCE))
- But there are differences!
 - HD1.6 MCE is a single round
 - SsD1.2.3 MCE is based on assessment or testing
 - Can be a single round, article, box, stack, etc.


HD1.2.3 QD FLOW CHART

- Complex
- Contains inconsistencies

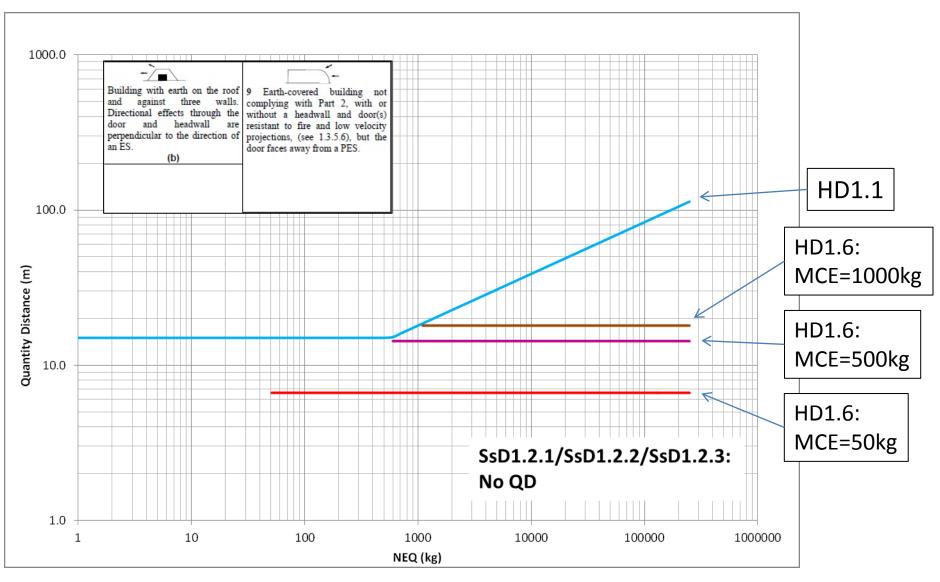
HD1.6 FLOW CHART

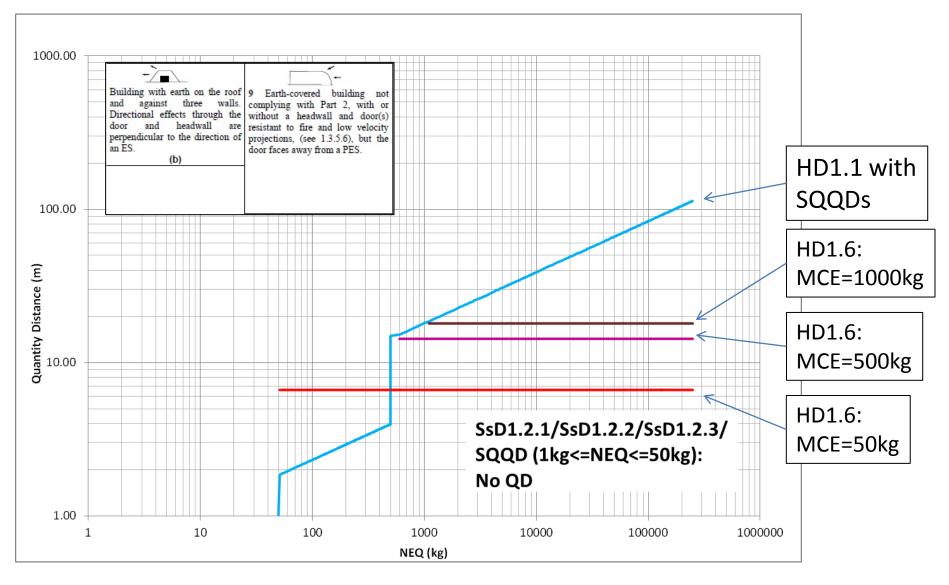
- **MUCH** easier than SsD1.2.3.
- HD1.6 MCE:
 - Only takes into account blast
 - Ignores fragments and structural debris



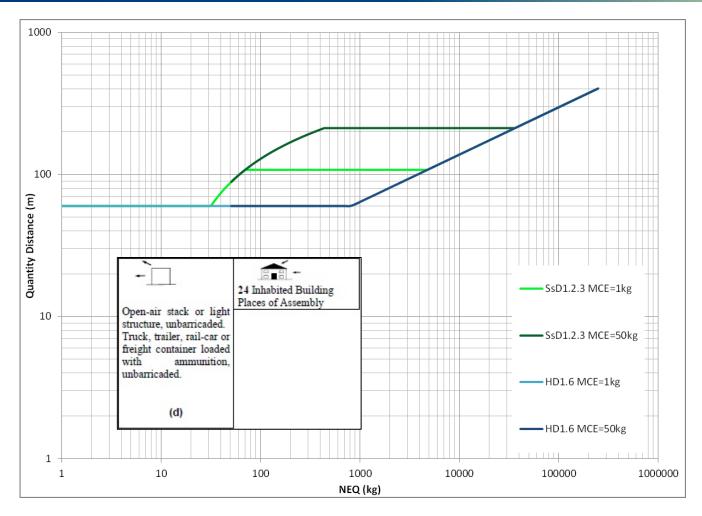
- Eight common storage scenarios
- A range of MCEs for HD1.6 and SsD1.2.3
- With and without HD1.1 Small Quantity QDs
- Comparing HD1.1, HD1.6 and SsD1.2.3

WHERE ARE THE BENEFITS?


Supporting Munitions Safety

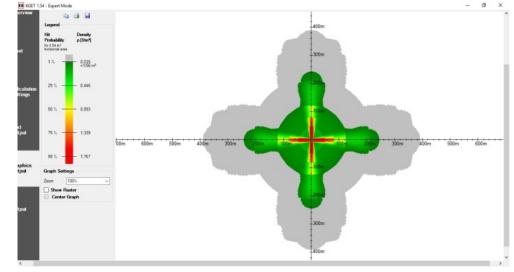

Lower QD for the same NEQ Higher NEQ for the same QD Mixture of 1 and 2

HD1.1 vs. HD1.6



SsD1.2.3 vs. HD1.6

Supporting Munitions Safety


Shows that SsD1.2.3 is not always lower than HD1.6

Supporting Munitions Safety

- The KG-ET made available by the Klotz Group
- Case studies conducted (see MSIAC report O-169)
- The KG-ET has a potential to be used to derive more detailed QDs using:
 - building parameters like dimensions, wall thickness, door properties
 - presence of barricades
- The KG-ET can also provide reduced QDs in off-normal

directions

- Operational Storage defined in AASTP-5
- Rules state that any munition is aggregated to HD1.1 irrespective of HD or SsD
 - Removes all benefits of IM in storage
 - Operational bases typically are not able to match QD
 - Situation can only be accepted through risk analysis

IM AND RISK

Risk = *Frequency* * *Consequence*

HD1.6 and SsD1.2.3 have the same consequences

- HD1.1 like effects (MCE) and thermal effect (NEQ)
- QDs based on consequence but does ignore probability of munition response
- HD1.6 has a smaller frequency (probability per unit of time)
 - Probability of threat stays the same
 - Probability of reaction/response changes
 - Difficult to quantify!

- Introduction of IM and lower QDs can lead to larger stockpiles or storage buildings built closer together.
- This will reduce costs associated with smaller storage facilities and simplified storage and transport.
- This will also introduce a 'Risk to Stock'.
- With larger stockpiles in a smaller radius there is a higher chance that entire stockpiles could be lost.
- This could impact on military operations.

- Different combinations of testing can lead to nomenclature confusion
- Reality offers greater complexity than assessment testing but has limited understanding
- IM can offer reduced consequences in operational accidents but may not eliminate the possibility of an accident occurring.
- HD1.6 has more extensive test requirements than SsD1.2.3, but has the larger QDs

- HD1.1 SQQDs will have an impact on the benefits of SsD1.2.3 and HD1.6
- Harmonisation between QD regulations for HD1.6 and SsD1.2.3 is required
- The KG-ET has a potential to be used to derive more detailed QDs
- Current aggregation rules in AASTP-5 mean that IM has no benefits in operational storage
- Any benefits of reduced QDs or larger NEQs must be balanced with the increased 'Risk-to-Stock'.

Supporting Munitions Safety

QUESTIONS?

Thank you for listening.

Any Questions?

