

NDIA

2016 Insensitive Munitions & Energetic Materials Technology Symposium

Compatibility Investigations on Novel Energetic Formulations of Nitrogen Rich Azole [Bistetrazolylamine(BTA)]

Sasidharan Nimesh*, Pisharath Sreekumar, Zhang Fan and How-Ghee Ang Energetics Research Institute, Nanyang Technological University, N1-B4a, 50 Nanyang Avenue, Singapore 639798. E-mail: nsasidharan@ntu.edu.sg

Outline

- Background
- Objective
- Bistetrazolylamine and Binders: Synthesis and characterization
- STANAG 4147: Test procedure, criterion.
- Compatibility studies: Results and Discussion
- Activation energy: Comparison with various systems
- Conclusion

High Nitrogen Tetrazole Derivatives as Insensitive High Energy-Density Materials							
$N \xrightarrow{H}_{N \to NO_2} NO_2 NO_2$ $N \xrightarrow{\oplus}_{N \to NO_2} NO_2 NO_2$ $N \xrightarrow{H}_{N \to NO_2} NO_2$		NO ₂	ZZ			N $N = N$ $2 (^{+}NH_{3}OH)$ N $N = N$ $N = N$	
dinitromethyl tetrazo HyAmNTz	dinitromethyl tetrazolate 5-trinitromethyl tetrazole Bistetrazoly			istetrazolylam BTA	5,5'-	ydroxylammonium) bistetrazolyl diolate KX-50	
Properties		Tetrazole derivatives			Conventional explosives		
	HyAmNTz	TNMTz	BTA	TKX-50	RDX	CL-20	
Density, g/cc	1.969	1.918	1.86	1.88	1.81	2.03	
Thermal stability, T _{dec.} ⁰ C	150	100	250	221	210	215	
Explosive Performance							
VOD, m/s	-	-	9120	9698	8983	9455	
P _{c-j,} GPa	-	-	34.3	42.4	38.0	46.7	
Sensitivity							
Friction sensitivity, N	144	9	>360	120	120	48	
Impact sensitivity, J	5.5	9	30	20	7.5	4	
Spark sensitivity, J	-	-	7.5	0.10	0.20	0.13	
ENERGETICS RESEARCH INSTITUTE							

Objective

- To investigate the compatibility of binders with Bistetrazolylamine(BTA), in an effort to assess the applicability of the molecule in explosive and propellant formulations.
- BTA represents one of the attractive energetic candidates with high-energy density and insensitivity, a rare combination.
- Although synthesis and characterization of novel high energy-insensitive molecules are reported, very few have been tested for their compatibility with known binders.
- Lack of information on the compatibility and stability of high nitrogen molecules hinders their further development as a formulation.
- The mixtures chosen for our study:
 - Bistetrazolylamine-Glycydyl azide Polymer (BTA-GAP)
 - Bistetrazolylamine-Poly nitratomethyl methyl oxetane (BTA-PNIMMO)
 - Bistetrazolylamine-Ethyl cellulose (BTA-EC)

- BTA shows excellent thermal stability up to 240°C
- DSC curve shows maximum heat release with in a short temperature range.
- P-t curve was measured to understand the ignitability and pressure response of BTA.

Binder	Mol. Weight, M _{n, gmol} -1	Density, gcc ⁻¹	Glass transition, Tg, ⁰C	Decomposition temperature, T _p , ⁰ C	Heat of decomposition , Jg ⁻¹
GAP	2835	1.35	-51.2	241.5	1917
PNIMMO	1295	1.28	-55.5	204.6	1123

EC with 48% ethoxy content was procured from Sigma Aldrich and used as received.

Importance of Compatibility studies

- Compatibility of novel energetic materials with components of formulations/composites are crucial for their safety and functioning. Ideally compatible materials should not have any chemical interaction with each other over a prolonged period.
- STANAG 4147, MIL-STD-268B and MIL-STD-650 explains the various test procedures and compatibility criteria for energetic materials.VST, IST, TG and DSC analysis includes the various test for determining the compatibility.

Compatibility using micro-calorimetry as per STANAG 4147

 High degree of accuracy in temperature profile and high sensitivity (nW) of micro-calorimeter is advantageous to measure heat flow over a long period. <u>6 channel TAM III from TA was used</u>.

- Thermal decomposition of BTA, GAP and PNIMMO occurs within a closer range of temperature.
- PNIMMO showed a faster heat accumulation rate at 85°C when compared to the other components

- BTA showed a greater degree of incompatibility with curing agent TDI, indicative of the reaction between the imino hydrogens and iso cyanate group.
- On comparison with the heat release rate of curing reaction with PNIMMO, reaction of BTA with TDI seems to take place at a slower rate.
- The terminal primary hydroxyl groups of PNIMMO will have a preferential reaction with isocyanate compared to that of imino groups in BTA.

Comparison of DSC

DSC profiles of BTA/binder mixtures before and after HFC study

 Decomposition characteristics of the formulations are preserved after the compatibility tests with binders.

Activation energy calculations

- Activation energy of decomposition of the energetic mixtures; BTA-GAP & BTA-PNIMMO was calculated.
- Kissinger and Ozawa equations were used for evaluation.
- BTA-GAP E_a 240±5 kJ/mol
- BTA-PNIMMO E_a 130± 3 kJ/mol
- BTA-GAP mixture showed a higher activation energy required for decomposition.
- Results indicative of ease of initiation/decomposition for BTA-PNIMMO.

Conclusions

- Compatibility of BTA with common energetic binders(GAP & PNIMMO) as well as with a non energetic binder (EC) were studied as per STANAG 4147.
- Binders showed good compatibility with BTA paving the way to visualize use of BTA as energetic ingredient/fuel.
- DSC analysis on the post experiment samples showed no considerable dilution of energy or change in heat flow profile.

Mixture	Normalized Heat, Jg ⁻¹	Degree of compatibility, D	Result
BTA-GAP	-14.05	0.67	Compatible
BTA-PNIMMO	-19.28	0.50	Compatible
BTA-EC	-1.4	0.09	Compatible

Thank You

