Using Neuroscience to Enhance Performance
Avenues for Fundamentally Improving Cognitive Performance

Jocelyn Faubert
University of Montreal

CogniSens ARC
Applied Research Centre Centre de Recherche Appliquée
The Challenges

Complex and diverse programs

• Time and resource costly
• Significant variability
• Challenges in monitoring efficacy
Perceptual Cognitive Benefits

Three distinct advantages

1. Efficacy Enhancement of programs
2. Early measurement of cognitive potential
3. Skill-specific enhancement
NeuroTracker
3D Multiple Object Tracking

- Measures attention
- Rapid learning
- Integrates with other tasks
Efficacy Enhancement of programs

Accelerated Learning

- The science of learning & adaptivity
- Specific versus general
- Optimized cognitive loading
Load Effects
Powerful principles in learning

- Distributed learning
- Progressive loading
- Extended complexity
Evidence of Effect

Changes in brain state

- Transfer to intelligence metrics
- Gains in Attention, WM, Executive Functions
- Improvements in neuroelectric activity

✈ Beta & Gamma
✈ Theta

Parsons & al., Clinical EEG & Neuroscience, 2015
Vartanian et al., Military Psychology, 2016
Early Measurement of Cognitive Potential

Identifying high responders

- Neutral cognitive task
- Steeper learning rate
- Superior adaptivity
Cognitive Profiling
A Practical Methodology

- New and insightful metric
- Simple and useful to administer
- Selective training & identifying leaders
Prediction of performance

Surgical resident study

- Initial NeuroTracker scores significantly associated with laparoscopic surgical abilities
 - Speed
 - Accuracy

- Other factors not significantly associated
 - Age
 - Sleep
 - Caffeine
 - Video game use

NBA study

| Table 1. Qualitative inferences on the magnitude of the relationship between game-related measures of performance, perceptual-cognitive function, and visual-motor reaction time (n = 12).† |
|---------------------------------|-----------------|-----------------|-----------------|
| Visual tracking speed | | | |
| AST | 0.78 | 99.7 | 0.2 | 0.0 | Most likely positive |
| TO | 0.49 | 90.1 | 6.9 | 2.9 | Likely positive |
| STL | 0.77 | 99.7 | 0.3 | 0.0 | Most likely positive |
| AST/TO | 0.78 | 99.8 | 0.2 | 0.0 | Most likely positive |

Visual reaction time					
AST	-0.22	16.5	19.0	64.5	Unclear
TO	-0.18	19.8	20.5	59.7	Unclear
STL	0.02	40.9	23.6	35.5	Unclear
AST/TO	-0.16	21.3	21.0	57.7	Unclear

Motor reaction time					
AST	0.04	42.5	23.5	33.9	Unclear
TO	0.29	72.2	16.1	11.7	Unclear
STL	0.19	61.4	20.0	18.6	Unclear
AST/TO	-0.07	30.5	23.2	46.4	Unclear

Physical reaction time					
AST	-0.13	24.6	22.0	53.3	Unclear
TO	0.01	39.0	23.7	37.3	Unclear
STL	0.10	50.0	22.6	27.4	Unclear
AST/TO	-0.14	23.7	21.8	54.5	Unclear

Variable region choice reaction reaction					
AST	0.07	46.1	23.2	30.7	Unclear
TO	0.15	55.7	21.5	22.8	Unclear
STL	0.27	69.9	17.1	13.1	Unclear
AST/TO	-0.05	32.8	23.4	43.8	Unclear

†AST = assists; TO = turnovers; STL = steals; AST/TO = assists-to-turnovers ratio.

Threshold set to 0.1 for all relationships.
NeuroTracker training shows improved passing % - transfer to the field performance

Objective evaluation
(Standard scoring grid of video by expert blind to the study)

Subjective improvement (% Post-Pre training)

Subjective self evaluation
(VAS measure)

Romeas, et al, Psy of Sport & Exercise, 2016
Skill-specific enhancement of training programs

Synergistic compatibility

- Complement training programs
- Additional performance metrics
- Integrate directly with training exercises
NeuroTracker Tactical Awareness

Complementary training

- Flexible to combine with dual-tasks
- Decision-making tests under pressure
- Metrics for guiding cognitive loading
Thank You

Jocelyn Faubert