National Aeronautics and Space Administration

SPACE LAUNCH SYSTEM

SLS Vehicle Modeling and Simulation

John Hanson SLS Deputy Lead Systems Engineer NASA Marshall Space Flight Center NDIA 18th Annual Systems Engineering Conference October 29, 2015 Abstract Number 18043

Use of Design Models in SLS

- Design models and requirements: reducing cost
- Use of M&S to reduce conservatism and enhance launch vehicle knowledge
- Early risk reduction obtained through use of M&S

Space Launch System

SLS Status

Engine tests with new controller Increased inlet pressures

Initial Core Stage hardware

New Booster tests

Use of Design Models in SLS

Requirements Goal with Use of M&S

- Goal Define a process to employ on SLS to minimize requirements and attendant verification using engineering models.
- Why?
 - Reduce the verification effort necessary for the Elements to satisfy vehicle-level requirements specifying the details of the system design
 - Reduce the verification effort necessary at the integrated vehicle level to track and roll up verification of all the detailed requirements
 - Allow the Elements the flexibility to adjust the detailed subsystem values to Element benefit without requesting approval for each detailed change
 - -Don't specify each detail, only control the output of the system model
 - Use of a single model for a system guarantees that the system-level impacts of changes will be visible, whereas specifying the detailed individual values does not. The model is needed anyway; the requirements are not.
 - Avoids the experience of having a system design that works, models that accurately show its behavior, but having to negotiate what the detailed requirements should be and how to verify them.
 - -e.g. Booster TVC model works, but in standard approach we would negotiate detailed TVC requirements.
 - Reduces resulting conservatism

Key Points used in determining which Parameters to Elevate to a Requirement

If the System is Sensitive to the Model Parameter Limits and the Limits are a design driver, ELEVATE

Not elevating a Model Parameter saves resources

- Determining the 'hard' limits for parameters can be an intensive analytical effort
- Debates on adequate margin included in a requirement can be prolonged
- Each additional requirement adds documentation and tracking

The program accepts the additional Risk when a requirement is not elevated

- Cost/Schedule Risk if we have to set a new requirement to get a model parameter "back in the box"
- Or technical risk of accepting the model parameter as is

Examples of which model parameters are elevated to requirements

	Elevated to Requirements	Model Output Parameters
Mass Properties	Dry Mass, Prop Load Limits -Rationale: directly affects SLS requirements, clear limits known	Time dependent Cg Rationale: Vehicle can accommodate multiple solutions, just needs to know the correct values
Thrust Vector Control	Core Stage Gimbal range and rate Rationale: Limits are significant driver in Core Stage design and limits are needed for design to proceed	Booster Gimbal range and rate: Rationale: Parameters are based on heritage and little risk that model outputs will become unacceptable.
Inertial Navigation System	Vehicle Ascent Insertion Accuracy Rationale: INS design and the navigation accuracy are highly sensitive to this and limits are needed for design to proceed.	Vehicle Position Rationale: Producing this output is part of the functional design definition of the INS and an auditable parameter

Inertial Navigation System Example

Traditional Requirements for INS System could result in <u>230 Shall</u> <u>Statements</u>

- Requirements for anti-aliasing portion:
 - The inertial measurements shall be antialiased
 - Anti-alias filter shall have a bandwidth of 29.5 Hz
 - Anti-alias filter shall execute at a minimum sample frequency of 250 Hz
 - Anti-alias filter shall have a maximum phase lag of 5 degrees at 1 Hz.
 - Anti-alias filter shall have a maximum gain of +/- 2e-3 dB at 1 Hz
 - Anti-alias filter shall have a minimum attenuation of 6 dB at 20 Hz

Anti-Aliasing Filter Implementation Model in Code

Model Input Data:

TF_method	3	<pre># 2nd order TF method: # 1) continuous with Euler integration, # 2) continuous using MAVERIC integration, # 3) discrete with Tustin transform</pre>
enableTFdyn_w	1	<pre># enable 2nd order transfer function # Cure bandwidth frequency (Ma)</pre>
zeta_w	29.5	# second order damping factor
TF_T_w_hz	250.0	<pre># Sampling freq for discrete filter (Hz)</pre>
enableTFdyn_a	1	<pre># enable 2nd order transfer function # Accol bandwidth frequency (Mg)</pre>
zeta_a TE T a bz	20.5 0.6 250.0	<pre># Accel bandwidth frequency (H2) # second order damping factor # sampling frequency for discrete filter (Hz)</pre>
		" Sumpting Liequency for diperced filter (m)

- Implementation in Code little ambiguity in intent or assumptions
- Alternate implementations are available. If coefficients are specified, they would be dependent upon a fixed execution rate, and therefore could be constrained.
- Alternate designs are possible. As long as the vehicle-level needs are satisfied, these can be explored without detailed requirements revision.
- Customer works directly with the subsystem folks to agree on the model that meets the integrated vehicle needs and works best for the Element

Some Advantages of Using Models

 Vehicle level doesn't need to see the verification of each detail, just that the model matches the hardware and meets the top-level vehicle needs
 If the contractor wanted to propose a completely new system, e.g. GPS/INS, it would be reflected by a completely different model. Using the approach of many detailed requirements, the contractor is led to a specific INS solution or has to change many requirements in order to change the system. With the model-based approach, if the new model meets the vehicle needs, changing to the new system is much easier.

Models May Not Work Best in All Cases

• For example, slosh damping requirements

- Model is a complicated characterization of slosh behavior
- Requirement characterization is simple, and exceeding the required value is all that is needed (see figure)
- A model is still necessary

Types of Models Used for SLS at the Vehicle Level

- Element system models (propulsion, finite element, mass properties, TVC, navigation, ...)
 Avionics box models
- Vehicle models (aerodynamics--16, finite element, mass properties, MPS, …)
- Integrated simulations (MAVERIC, CLVTOPS, ML_Pogo, ARTEMIS, ...)
- Requirements definition (aerothermal, venting, loads, debris, …)
- Guidance, Navigation, and Control (GN&C) model
- Mission and Fault Manager
- Probabilistic Risk Assessment
- Discrete Event Simulation for operations planning

Design Model Verification

- Models delivered with Element Design Cert may perform better than spec limits
- If acceptance data is outside the performance of DCR models, the models will be updated and flight performance will be reassessed as part of system acceptance

Element model delivery:

- Models are developed in accordance with SLS-PLAN-173, SLSP Modeling and Simulation Plan
- Design models used at the System Level are maintained in the SLS-RPT-105, SLSP Design Model Log
- Design models are delivered in accordance with SLS-STD-038, SLSP Design Model Delivery Standard

- SLS-STD-038 uses a streamlined subset of the Credibility Assessment Factors defined in the NASA Modeling and Simulation Standard (NASA-STD-7009)
- Model verification and validation are established and uncertainties reported to the level necessary for each development milestone before a model is baselined
- Reassessed with each model delivery or update

Design Models Meta Data

The meta data controlled with the design models

- Bookkeeping (Identifier, Version, Release Date, Model Name, SLS Element/Subsystem, Dependencies on other models, Milestone applicability)
- Statement of Intended Use
- Technical Description of Model spells out the required system inputs, outputs, test cases
- Assumptions
- Operational Phase (applicability)
- Verification
- Validation
- Results Uncertainty (identifies and quantifies uncertainty of model output)
- Results Robustness
- Limitations (provides boundaries on the set of parameters for which a model result is valid)
- Input Pedigree (includes the uncertainty of input data)
- Use History
- Conservatism
 - So that an evaluation can be performed when the design is sensitive to the model, and so that conservatism doesn't get piled on top of conservatism.

How Has Use of M&S Helped SLS Early? A Few Examples

Advanced Concepts

- INTROS is a MSFC-developed tool that does conceptual launch vehicle design and sizing based on stage geometry and mass properties.
 - Mass properties are established for selections from a large master list of launch vehicle systems, subsystems, propellants and fluids.
 - Mass calculations are based on mass estimating relationships (MERs) that are automatically generated from a large database of MERs that is built into the program.
 - Program mass calculation accuracy for existing and historical launch vehicles has been verified to be well within 5%.

LVA is a MSFC-developed tool that provides fast launch vehicle structural design and analysis.

- It supplies detailed analysis by using time proven engineering methods based on material properties, load factors, aerodynamic loads, stress, elastic stability, deflection, etc.
- This tool and its predecessors have been in use at MSFC for over 25 years.
- POST is an industry-standard trajectory optimization tool.
- Once a candidate configuration is developed in INTROS, these tools are used iteratively to converge on viable design solutions.

How Has Use of M&S Helped SLS Early?

Prior to SRR/SDR, analyzed items such as these using models

- Engine out capability
- RGA number and location
- Vehicle sizing trade
- Attitude control (P/Y/R) need for CS/US rate at Payload Separation
- T-0 stay need, do we need it, where, active damping?
- Core Stage Engine throttling needs (max dynamic pressure, inlet pressure, separation bolts, max accel)
- Determined the necessary number of engines for all evolved versions
- Trajectory runs with CFD-generated line loads
- Used models for loads generation and aerothermal conditions
- 6DOF dispersed analysis for insertion accuracy, performance, impact footprint, attitude rates for separation events, trajectories for loads & induced environments, separation clearance analyses
- Early estimates of Flight Performance Reserve needed without extra conservatism
- Modeling of heavy/slow and light/fast vehicles

Flex Mode Dispersions vs Finite Element Model Dispersions

Traditional techniques for dispersing flex modes

• Independent dispersions - No correlation between shape and frequency

- Non-physical responses requires minimal set of modes to be used (~10)
- Limits spectrum for analysis

Dispersed FEM

- Randomly disperse FEM based on input uncertainties
- Shape and frequency correlated
- Responses are all physically realizable
- Significant increase in analyzed spectrum (~200 modes)

Day of Launch Wind Biasing

PDR Time Frame

• Day of launch wind biasing to reduce buffet loads by reducing maximum total angle of attack

Day of Launch Wind Biasing Process

Day of Launch Wind Biasing Process

Examples of Day of Launch Process Results

- Enhanced knowledge of correct knockdowns to use
- Enhanced knowledge of launch availability
- Ability to trade parameters, for example wind filtering frequency and wind measurement timeline

Led to Answers/Design Solutions Early?

- PDR Time Frame
 - Designed a good Design Reference Mission for ICPS contractor.
 - -Result of 6DOF Monte Carlo dispersion studies
 - Forward attach bolt adjust and throttle down to relieve excess bolt loads
 - No tower flyaway maneuver and wind placard to relieve acoustic loads
 - Identified inlet pressure concern for stuck throttle cases
 - Resolved controllability concern related to vehicle aft structure flexibility and aft RGA
 - ICPS tank stretch from simulation work
 - Navigation state vector update
- CDR Time Frame
 - Aerothermal exceedances for certain engine out cases due to increased angle of attack
 - Might not have found these previously, or might have needed a lot more work to find them. Simple MC runs overnight, with computer compilation of the results. Found just before CDR. Using simulation to mitigate.

Improved Analysis of Failure Cases

- Failure and abort cases, Monte Carlo nominal and failure runs done early.
- More sophisticated abort triggers improves crew safety.
- Saturn V had a fixed value for a bad case.

Improved Analysis of Failure Cases

- Excess time (after detecting the failure and departing) available for escape
- Color indicates the first vehicle limit that was exceeded
- Could point to an issue that needs to be worked further

Monte Carlo Stability Analysis

PDR Time Frame

- Monte Carlo analysis of stability margins, allows for reduced conservatism.
- This is a gain in many design areas: instead of piling worst on worst, or bad on bad, Monte Carlo results are statistical.

Some Other Uses of Models in SLS

- Using discrete event simulation to model the operations process, assembly, test, etc. To optimize the flow, understand the long poles in the tent, and understand how long each operation will take.
- Modeling of solid rocket booster options using stick traces and rules from Booster Element, to optimize Booster along with resizing of a stage or other trade parameters.

Stick traces with constraints defined by Booster personnel, used by trajectory/sizing personnel

Conclusion

Modeling and Simulation has enabled SLS to Reduce cost Find issues sooner Provide higher fidelity results Allow more design flexibility Reduce excess conservatism Provide for increased mission success and crew safety

Contact Information

John Hanson
NASA Marshall Space Flight Center
256-604-8111
john.m.hanson@nasa.gov