University of Southern California Center for Systems and Software Engineering

COSYSMO 3.0: Updating Systems Engineering Cost Estimation to Support Affordability

Jim Alstad* Dr Barry W Boehm Dr Jo Ann Lane Mr Garry Roedler Ms Marilee Wheaton

NDIA Systems Engineering Conference October 29, 2015

Jim Alstad* 310/344-0894 jalstad@usc.edu

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

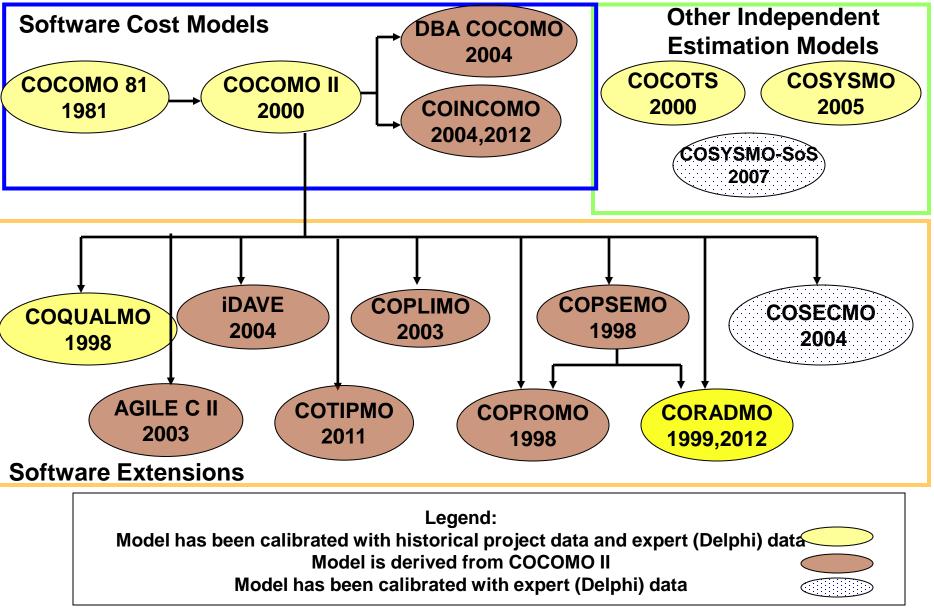
Poor SE Cost Estimation Threatens Affordability

Poor estimates of systems engineering cost can lead to suboptimal systems engineering, resulting in missed engineering opportunities. Here are some example outcomes:

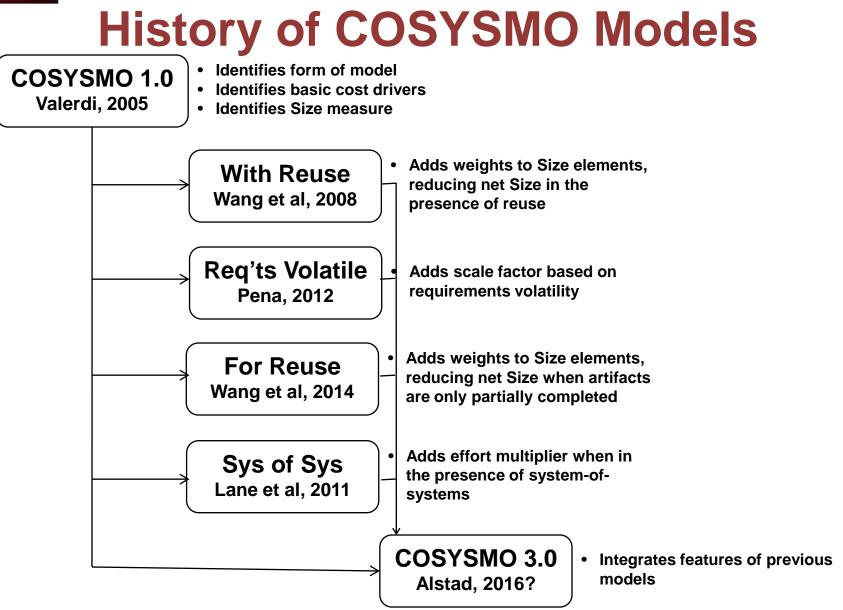
- Rushed or reduced scope of systems engineering, resulting in increased development costs for other engineering disciplines or missed life cycle considerations
- Inadequate time to consider new technologies that could result in major cost reductions
- Technical debt (such as defects and unresolved issues) surfacing during operations & sustainment

Each of these is an affordability problem:

Systems engineering cost is reduced, but total life cycle cost is increased



- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary


University of Southern California COCOMO Family of Cost Models Center for Systems and Software Engineering

5

Dates indicate the time that the first paper was published for the model

COSYSMO 3.0 Directions

Incorporate and harmonize existing COSYSMO model research and experience for estimating systems engineering effort:

- Several factors affecting the COSYSMO cost model have been shown to be valuable in increasing estimation accuracy (terminology from [1]):
 - Reuse (partial model—Development With Reuse) [3]
 - Reuse (with Development For Reuse) [1]
 - Requirements volatility (RV) [4]

The rating scales for these could be integrated into a comprehensive COSYSMO model.

Enhancement planned for inclusion:

• System-of-system considerations are hypothesized to affect system engineering costs:

10/14- Interoperability considerations [6]

COSYSMO 3.0 Directions Part 2

Enhancements under discussion:

• Explore a model for total development cost based primarily on the COSYSMO parameters [17, 7]

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

Center for Systems and Software Engineering

COSYSMO 3.0 $Top-Level Model_{15}$ $PH = A \cdot (AdjSize)^{E} \cdot \prod_{j=1}^{15} EM_{j}$

Elements of the COSYSMO 3.0 model:

- Calibration parameter A Exponent (E) model
- Size model
 - eReq submodel, where
 4 products contribute
 to size
 - Reuse submodel

- Accounts for diseconomy of scale
- Constant and 3 scale factors
- Effort multipliers EM
 - 15 EMs

Harmonized COSYSMO 3.0 Size Model

eReq(Type(SD), Difficulty(SD))×

SizeDrivers

 $AdjSize = \sum_{i=1}^{n}$

 $PartialDevFactor(RML_{Start}(SD), RML_{End}(SD), RType(SD))$

- SizeDriver is one of the system engineering products that determines size in the COSYSMO family (per [2]). Any product of these types is included:
 - System requirement
 - System interface
 - System algorithm
 - Operational scenario
- There are two submodels:
 - Equivalent nominal requirements ("eReq")
 - Raw size
 - Partial development
 - Adjusts size for reuse

Center for Systems and Software Engineering

Size Model –

eReq Submodel

- The eReq submodel is unchanged from [2].
- The submodel computes the size of a *SizeDriver*, in units of eReq ("equivalent nominal requirements")
- Each SizeDriver is evaluated as being easy, nominal, or difficult.
- The following table contains conversion factors for the conversion of a *SizeDriver* to a number of eReq:

Size Driver Type	Easy	Nominal	Difficult
System Requirement	0.5	1.0	5.0
System Interface	1.1	2.8	6.3
System Algorithm	2.2	4.1	11.5
Operational Scenario	6.2	14.4	30.0

University of Southern California Center for Systems and Software Engineering

Size Model –

Partial Development Submodel

- The basic concept:
 - If a reused SizeDriver is being brought in, that saves effort, and so we adjust the size by multiplying the raw size by a PartialDevFactor less than 1.
 - The value of *PartialDevFactor* is based on the maturity of the reused *SizeDriver*, and is looked up in a table [1].
 - How fully developed was the SizeDriver?
 - If there is no reuse for this SizeDriver, then PartialDevFactor = 1 (no adjustment).

DWR Reuse Maturity Level:	New	Modified	Adapted	Adopted	Managed
DWR % of full-project cost (Table 4):	100.00%	66.73%	56.27%	38.80%	21.70%

Center for Systems and Software Engineering

COSYSMO 3.0 Exponent Model

• Exponent model is expanded from Peña [4, 9]

$$+ SF_{ROR} + SF_{PC} + SF_{RV}$$

Where:

- $E_{COSYSMO1} = 1.06$ [2]
- SF = scale factor
- ROR = Risk and Opportunity Resolution
- *PC* = Process Capability
- *RV* = Requirements Volatility

The effect of a large exponent is more pronounced on bigger projects

Harmonized COSYSMO 3.0 Effort Multiplier Model Here are the 15 effort multipliers:

Data Item
Subjective assessment of the CONOPS & the system requirements
Subjective assessment of the system architecture
Subjective difficulty of satisfying the key performance parameters
Influence of legacy system (if applicable)
Maturity, readiness, and obsolescence of technology
Degree to which this system has to interoperate with others
Sites, installations, operating environment, and diverse platforms
Number of applicable levels of the Work Breakdown Structure
Subjective assessment of all stakeholders
Subjective assessment of the team's intellectual capability
Subjective assessment of staff consistency
CMMI level or equivalent rating
Location of stakeholders and coordination barriers
Subjective assessment of SE tools
Is this project developing artifacts for later reuse?

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
 - Summary

Center for Systems and Software Engineering

System-of-Systems and

Interoperability

- Suppose that SE work is being done on a system that is a constituent system in a system-of-systems. How is that context manifested in the SE project?
 - Answer: As interoperability requirements
 - Interoperability: The ability of systems to provide services to and accept services from other systems and to use the services so exchanged to enable them to operate effectively together.
- COSYSMO 3.0 includes interoperability as an influence on cost

Center for Systems and Software Engineering

COSYSMO 3.0

Interoperability Model

- Lane & Valerdi [6] propose that interoperability be considered a cost influence in the COSYSMO family
- Propose this influence could be manifested in two ways:
 - Method 1: Add a new effort multiplier (covered under EMs)
 - Method 2: Adjust the easy/medium/difficult rating scale for system interfaces (part of the Size model)
- The working COSYSMO 3.0 includes both methods; only one would be retained in final COSYSMO 3.0.

Center for Systems and Software Engineering

Size Model –

Adjustment for Interoperability

Adjustment for interoperability (Method 2):

 [6] proposes (in its Table 3) that the table that defines the easy/medium/hard rating scale for a system interface (from [2]) be adjusted by adding a new row (the last row in this table):

Easy	Medium	Difficult
Simple messages and protocols	Moderate communication complexity	Complex protocol(s)
Uncoupled	Loosely coupled	Tightly coupled
Strong consensus among stakeholders	Moderate consensus among stakeholders	Low consensus among stakeholders
Well behaved	Predictable behavior	Emergent behavior
Domain or enterprise standards employed	Functional standards employed	Isolated or connected systems with few or no standards

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

Summary

- COSYSMO 3.0 will provide independent estimates of the cost of thorough systems engineering required based on the project parameters
 - Thereby avoiding inadequate systems engineering efforts that tend to lead to affordability problems
- COSYSMO 3.0 will provide estimates in the systemof-systems context
 - Through applying cost adjustments for interoperability

Bibliography (1/3)

- 1. "A Generalized Systems Engineering Reuse Framework and its Cost Estimating Relationship", Gan Wang, Garry J Roedler, Mauricio Pena, and Ricardo Valerdi, INCOSE 2014.
- 2. "The Constructive Systems Engineering Cost Model (COSYSMO)", Ricardo Valerdi (PhD Dissertation), 2005.
- 3. "Estimating Systems Engineering Reuse with the Constructive Systems Engineering Cost Model (COSYSMO 2.0)", Jared Fortune (PhD Dissertation), 2009.
- 4. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort", Mauricio Pena (PhD Dissertation), 2012.
- 5. "Life Cycle Cost Modeling and Risk Assessment for 21st Century Enterprises", Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong, Richard Turner (presentation), April 29, 2014.
- 6. "System Interoperability Influence on System of Systems Engineering Effort", Jo Ann Lane, Ricardo Valerdi, CSER 2011.
- "COSYSMO Extension as a Proxy Systems Cost Estimation" (presentation), Reggie Cole, Garry Roedler, October 23, 2013.

Bibliography (2/3)

- "COSATMO: Developing Next-Generation Full-Coverage Cost Models" (presentation), Jim Alstad, USC CSSE Annual Research Review, April 29, 2014.
- 9. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort" (presentation), Mauricio Peña, Ricardo Valerdi, October 18, 2012 (COCOMO Forum).
- 10. "Cost Model Extensions to Support Systems Engineering Cost Estimation for Complex Systems and Systems of Systems", Jo Ann Lane, CSER 2009.
- 11. "Proposed Modification to COSYSMO Estimating Relationship", Gan Wang, Ricardo Valerdi, Barry Boehm, Alex Shernoff, INCOSE 2008.
- 12. "Towards COSYSMO 3.0", revised PowerPoint presentation by Gan Wang (filename is "COSYSMO 3.0 Definition Outline.Rev.pptx"), May 2015.
- 13. "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum).

Bibliography (3/3)

- 14. "Towards COSYSMO 3.0", 3rd revision of PowerPoint presentation by Gan Wang (revises [12]) (filename is "COSYSMO 3.0 Definition Outline.Rev3.pptx"), June 2015.
- 15. "C4ISR Architecture Working Group Final Report Levels of Information System Interoperability (LISI)", Department of Defense, Washington DC: OSD(ASD(C3I)) C4ISR AWG, 1998.
- 16. "The Levels of Conceptual Interoperability Model", Tolk, A., and Muguira, J., Proceedings of the 2003 Fall Simulation Interoperability Workshop. Orlando FL, September 2003.
- 17. "Towards a Holistic, Total Engineering Cost Model", Wang, G., Shernoff, A., Turnidge, J., and Valerdi, R., INCOSE Singapore, July 2009.
- 18. "COSYSMO Reuse Extension", Wang, G., Valerdi, R., Ankrum, A., Millar, C., and Roedler, G., INCOSE Utrecht, June 2008.
- 19. "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum)

Backup Charts

sity of Southern Califor

Um

