Transitioning System Engineering Research Efforts into Practice

Barry Horowitz October 2015

Systems Engineering vs Other Engineering Research

Examples of What's Different About SE Research

- Need to address policy/process issues as an early transition activity
- Integrative in nature, so transition requires "platform" partners, as well as policy/process partners
- The specifics of integration may vary from application to application (not a commodity), so no directly repeatable cost or benefit
- The trade-off space varies from application to application
- Issues of scalability: Can have a broad range of what constitutes required scale
- Unlike a new technology component, can't easily compare the new technology to existing components that it would replace or supplement

So How to Transition a SE Innovation

- Integrated early demonstrations of value that address important needs more effectively than current technology research approaches and create integrated learning environment
 - Realistic scenarios integrated with existing systems
 - Operational partners
 - Policy partners
 - Comparison with other possible system approaches
- Need for a cost benefit analysis that recognizes a range of applications (low scale to high scale)
- Need to address evolutionary aspects of the innovation
- Need to make the uncertainties visible and provide a path for addressing uncertainties while making progress

Example: System Aware Cybersecurity

New SE Direction(1): Not Only the Network and Perimeter

- Too Many Penetrations
- Insider Attacks
- Supply Chain Attacks
- Need to Include:
 - Weapon Systems
 - C2 Systems
 - Sensor Systems
 - Logistics Systems
 - Computer Controlled Physical Plant Systems (Engines, Electrical Power, Rudder Control, etc.)
 - Etc.

New SE Direction(2): Mission-Based Security Strategy

- Need to make solution designs and decisions on a mission execution basis, rather than limited to a widget or single subsystem basis
 - Attack occurs at Subsystem 1, symptoms appear at Subsystem 2
 - Meta data example
 - Attack initiation example
 - Detecting an attack through system consistency checks
 - Waypoint change example
 - Multiple and diverse sensors

New SE Direction(3): Security Through Monitoring System Functions, Emphasizing Physical Systems

- DoD-funded System Aware Cybersecurity effort
 - December 2014 flight evaluation of protection for an autonomous surveillance system onboard a UAV
 - Defended on-aircraft attacks to prevent specific surveillance operations:
 - Waypoint change
 - Camera Pointing Control
 - GPS information for navigation or camera pointing
 - Image meta data changes

High Level Architectural Overview

"Super Secure"

SECURITY FOR AUTONOMOUS SURVEILLANCE SYSTEM ON BOARD A UAV (TECHNOLOGY)

GAUSS- GTRI AIRBORNE UNMANNED SENSOR SYSTEM

FOUR SENSOR OBJECTIVE BASELINE

Multi-Channel Radar (8 channels)
ESA Antenna: 8 phase centers, each 4 x 4 elements
X-band, 600 MHz BW (design; 1 GHz max)
Arbitrary Waveform Capable (1st design LFM)
Acquisition Modes: DMTI, SAR, HRR, HRRD, CCD

• Multi-Channel SIGINT

Near 1 and 2 GHz Bands Two orthogonal dipole pairs: TDOA geo-location Ambient Complex-Baseband Spectrum Analysis Signal Copy Selected Sub-Bands

- Gimbaled, Stabilized EO/IR Camera Ball
- High Precision GPS & INS (eventual swarm capable inter-UAV coherent RF sensors)

CAPABILITIES

- Electronic Scanning; No Antenna Mechanical Gimbal
- Multi-TB On-Board Data Recording
- Reconfigurable for Other Sensors: LIDAR, HSI, Chem-Bio
- Multi-Platform Distributed Sensor Experiments (eg, MIMO)
- Autonomous & Collaborative Multi-Platform Control
- Space for Future GPU/FPGA On-Board Processing

Modified Griffon Aerospace Outlaw (MQ-170) – Extended Range (ER) Unmanned Aircraft System (UAS)

- Length 9.2 ft
- Wingspan 16 ft
- GTOW ~180 lbs
- Payload ~35-40 lbs
- Ceiling 14 kft
- Cruise speed 70 knts
- Endurance 9 hrs

Current Project Exploits and Solutions

- Exploits
 - Waypoint Manipulation from ground or onboard the aircraft
 - Meta Data manipulation on imagery
 - GPS embedded data manipulation
 - Pointing control of surveillance camera
- Solutions
 - Airborne and ground-based detection of attacker waypoint changes, classifying the nature of the attack, and restoration
 - Airborne detection of meta data manipulation
 - Airborne detection of embedded GPS attack
 - Airborne detection of attacker control of camera pointing and correction

System Characteristics for Monitoring Supports Feasibility of Highly Secure Sentinel Implementations

- Experience To-Date Shows:
 - Very small monitoring apps (< 500 SLOC)
 - No requirement for high performance or tight synchronization
 - No complex intertwining of applications
 - Manageable number of hardware components
 - Diverse low cost hardware is available, supporting diverse OS's, diverse programming languages, diverse communications protocols, etc.

Example Implementation

SW CPU and memory usage fingerprint

Formed a Company to Productize the Technology Component of UVa Research

- Center for Innovative Technology Grant to plan for a new company to transition Sentinel technology and tools into practice
- UVA initiative included:
 - Partial company ownership by the University
 - Protection of IP through patents
 - Licensing IP to new company
- Transfer of UVA research staff from UVA to the new company

Gain Horizontal Experience with Multiple Prototypes/Different Partners

- DoD
 - UAV/Surveillance system, including in-flight evaluation
 - Currently employed AF/Army AIMES video exploitation system
 - Radar system (In early design phase)
 - Initiating Army tank project related to advanced fire control system
 - Laboratory-based multi-sensor collection system for mission security research
- NIST (Best practices) 3d Printers
- Automobile cybersecurity
 - Security for Perrone Robotics DARPA Urban Challenge autonomous vehicle
 - Virginia State Police project

Automobile Video

Voluntary Technology Partners

- Air Force/SiCore Small business security technology company focused on FPGA security
- NIST SW Testing Tools Technology Group
- MITRE
- Aerospace Corp
- APL
- Kaprica Security
- Digital Bond

RISK BASED METHODOLOGY FOR SELECTING FUNCTIONS TO MONITOR (POLICY)

Architecture Selection Teams

- Blue Team 1 Identifies and prioritizes critical system functions
- Red Team Identifies most desirable/lowest cost attacks (cost measured in complexity, risk of discovery, dollars required, etc.)
- Blue Team 2 Identifies the set of security design patterns that address results of Blue/Red team prioritization analyses
- Green Team Conducts cost/asymmetry analyses and selects desired solution that fits budget constraints

System Aware Cyber Security Framework: V2.0

Partners for Policy-related Research

- APL
- Leidos
- Spectrum
- Army CRADA being developed

OPERATIONAL AND HUMAN FACTORS (PROCESS)

Operational Considerations (Process)

- Human Factors and Training Requirements
 Zero day attack that happens once in your career
- Simulation experiments with UAV operators at Creech AF base resulting in important new system insights
- UAV operator attributes for confident response
 - Live experiments at Wright Patterson in February

Operational Procedures and Human Factors Partners

- MITRE on Creech AFB experiment, including on-site UAV operations people
- AFIT/AFRL on operator training, including providing test environment

Observations

- Due to lower costs for technology components and standards that simplify integration, we can use operational prototyping to evaluate new concepts (e.g., autonomous cars)
- Operational prototyping allows for Technology, Policy and Process to be concurrently addressed and learned about
 - More degrees of innovation freedom
 - More rapid time-lines compared to a sequential transition strategy
- While more degrees of freedom for innovation, also are more issues to be concurrently addressed and evaluated
- Voluntary partners who can support either technology, process or policy find opportunity in engaging in a university-based systems focused project