

Achieving MBSE Benefits amidst Multiple Government Program Office System of System Challenges

John Tyreman – Lockheed Martin Undersea Systems

George Saroch – PMS 420 SEIT PAPM

Rich Byers – Naval Surface Warfare Center, Panama City

LOCKHEED MARTIN

LCS Mission Modules Systems Engineering & Integration

1

Agenda/Objective

- LCS Mission Module Challenges
- Submarine and LCS synergy
- Come as you are benefit/challenge
- LCS Model based SoS SE&I approach summary
- Interface model SoS analysis schema
- Data concordance analysis capabilities
- Model benefits
- Conclusion

LCS Mission Modules Challenge: Sheer Complexity

LCS Mission Capabilities

Multiple Mission Packages

Remote Minehunting Mission Module

Multiple Mission Systems

Mount iple Mission Systems

Mission Package

Mis

Mine Countermeasures Mission Package
Multiple Mission Modules & Multiple Increments

RMH Mission Systems

Multiple Development Organizations

 PM

RMS PMS 420 LM

Ships LH&R PMS 501 LM (FRE), GD (IND)

Mission Bay Stations PMS 501 LM (FRE), GD (IND)

MVCS PMS 420 NSWC-PCD

Ship C2 IWS-8 LM (FRE), GD (IND)

PMS 420

PMS 495

OEM

NSWC-PCD

SAIC, NSWC-PCD

LCS mission modules have both system- and organizational-complexity which results in formidable integration challenges

System

Mission Package C2

MCM Analysis

LCS MP Model Based SoS SE Analysis

History & Submarine Reuse

LCS Mission Modules Systems Engineering & Integration

2000 2010 2005 2015 Submarine SoS SE & I (SWFTS/NPES SE&I): Thought Leader, Steve Lose Big System: Multiple PEOs and program offices, 4 ship classes, 4 Million lines of SW code, 65 cabinets Complex interfaces: 30 subsystems, 2800 interface requirements, 25 OEMs Fast Update Pace: Yearly alternating capability / technology updates State of practice Centrally managed MDA **Model based Systems Point to Point** interface requirements **Prototype Engineering (MBSE) IRS Documents SoS MBSE Methodology** LCS Mission Module SoS SE & I, Thought Leader, George Saroch Big System: 12 Mission modules, 2 class variants Complex interfaces: 25 subsystems in RMH MM alone **Remote Minehunting** Come as you are Fast Update Pace: 4 planned increments / RTI updates Gaps **MBSE SoS Pilot MP Common interface Products** MVCS MPOE MPCE MP ICD **SoS Tasking** Details RMH Mission PMS 420 sponsored SoS LCS Interface Model Pilot Module SE Analysis Interface MBSE model development – Significant Submarine Reuse RMH Mission Module Interface Requirements Generation Interface Multiple RMH MBSE-enabled issues identified Model

Significant Submarine Methodology and Tool benefits to LCS

LCS Mission Modules Challenge: Come-As-You-Are Reuse

"Come as you are" attribute	Result
Capability is already developed and tested on another platform, theoretically being reused for "Pennies on the dollar"	Generally, core capability IS available on the cheap, but integration with the platform and adjacent systems quickly eats into the savings
Interface requirements are individually developed and tested by each "comeas-you-are" mission system developer	Key interface functions are designed out of sync and while initial individual system development costs are less, SoS integration costs can be very high
Mission level operational specifications are not reflected coherently in the interface requirements	Each system has gaps and inconsistent requirements relative to the mission level specs, and as a result, mission level performance is unpredictable and KPPs are often not met

The "come-as-you-are" (low-cost-capability) benefit does not have to come at a high platform integration cost → <u>A better approach is needed</u>

Sos MBSE Integration Methodology MBSE Interface Model Architecture / Process

- Stakeholder developed requirements
- Structured entry into model
- Jointly reviewed model products

SoS MBSE Integration Methodology starts with a collaborative framework to develop solid interface requirements and ends with SoS thinking amongst all participants

PMS 420 MBSE Landscape SE Hierarchy / Engineering Model Overview

LCS Mission Modules
Systems Engineering & Integration

SOS Mapping to DODAF/SYSML Views

SoS MBSE Interface Model manages the complex system information in a structured manner

LCS SoS Interface Model Multiple Level (Nested) Interface Definitions

Structured and Regimented Nesting of Architecture and Interface Decomposition

Synchronized Interface/Requirements Decomposition Example

Model Schema synchronizes and structures the decomposition of architecture, interfaces, and Interface Requirements

ANSI and

interfaces

custom

LCS SoS MBSE End to End Analysis

Network Topology

Network standards

Throughput "choke point" analysis

Interface model provides an end-to-end viewpoint in the data, electrical and mechanical domains to engage the appropriate SME discipline.

SW Hosting

Environment

Basis to manage OS

MP ICD Content: Operational Analysis Artifacts

- Flow of activities for decomposing operational information
- Lowest level activity becomes

Sequence Diagrams

Provides means to ensure operations between subsystems are covered by requirements Provides baseline for additional operational analysis

Linked Interface Requirements

- Thread function integrity in requirements baseline
- Objective test checklist

SoS MBSE Interface model provides a solid foundation to ensure operational architecture to interface requirements integrity

System of SystemsThread Integration Maturity

Operational/System Architecture and Interface Requirements

	Requirement Text	Realized By	Used By	Thread Function	Ver Metho d	Pri	LM Test		Planne d Test
	The RMMV Control Subsystem and MVCS								
	Host Subsystem shall exchange vehicle			Automatic					
	navigation data to support MVCS automatic	RMMV	MVCS	Link		1 -			
	link management.	Control	Host	Switching	Test	High	No	No	None
	Once the RMMV power has been turned off,								
	the RMMV Subsystem shall alert the MVCS								
/	Remote Subsystem and provide seconds								
	for a graceful shutdown of MVCS Remote		MVCS	Power		2 -			
	processing equipment.	RMMV	Remote	Management	Test	Med	Yes	No	Yes
	The RMMV/MVCS Host subsystem interface								
	shall provide a minimum data link								
	throughput of Mbits/second per vehicle					-			
	for transmission of data from the RMMV to		MVCS			1 -			
	the LCS in LOS communications mode.	RMMV	Host	Throughput	Test	High	No	Yes	Xes

Interface RVM Interface requirements

- Interface requirements with Verification method and Priority
- Test conduct survey from constituent subsystems
- Mission Module thread functional test case organization

Legend:

Tested Requirements

- **Tested** by any of following:
- RMS/LM Val/Ver testing
- MVCS/PCD Throughput testing
- MVCS/PCD SRS testing
- RMS/LM Integration testing

Untested Requirements

- **High**: Requirements failure results in Pri 1 or 2 SPR
 - Med: Requirements failure results in Pri 3 SPR
- **Low**: Requirements failure results in pri 4 or 5 SPR

SoS Thread Integration Maturity Model

- Mission Module thread functional test case organized
- Compiled survey of prioritized interface requirements test voids

Structured SoS Thread Integration Maturity model provides a means to objectively and thoroughly plan platform integration

MBSE Thread Integration Maturity Support

Automated *Thread level* Interface-RVM status

Thread level **Thread** Integration Maturity

PRE-PLATFORM per thread Risk Mitigation

Predictable per thread Platform Performance

LCS SoS MBSE Integration Methodology RMH Benefit / ROI

SoS MBSE Activity	Approach	Benefit / Result
1. Maximize RMH Q20 Sensor Thread Performance	Defined the RMH sensor thread architecture, end-to-end performance requirements for the Q20-B sensor information movement/processing.	 Technical: Established initial NSAM performance requirements for Q20B sensor Technical: Developed RMH sensor thread end-to-end architecture to maximize TPM adherance
2. Define RMH MM Orphaned Hardware	Developed PMS 420/403 "Orphan MOA" which adjudicated technical (spec) and programmatic (\$\$) ownership with 420/501/503/495 for 41 configuration items	 Cost/Schedule: Avoided cost and schedule churn 41 tactically required configuration items Defined full set of capability required to transition the RMH MM to production
3. Mitigate RMH Comms (RMS / MVCS) Interface Risk	Generated MVCS/RMS interface requirements verification matrix (I-RVM) identifying 62 high-priority interface requirements which had not been adequately tested.	 Cost/Schedule: Drove RMS/MVCS integration problems to be found and fixed much earlier in the lifecycle Risk Mgt: Provided objective information manage IOT&E integration risk
4. Mitigated RMH on FRE interface risk	Developed performance-requirements based approach to buy-down RMH on FRE risk well ahead of on-platform timeframe	 Risk Mgt: Mitigation plans developed for 4 high priority and 5 medium priority MCM on FRE risks Risk Mgt: Options developed for wake flow-field analysis to benefit multiple UxV L&R Risk Mgt: Options developed for seaframe information exchange risk

Model and Methodology investment recouped .. And counting

SoS MBSE ROI Foundation

Note¹: Source:NIST Planning report 02-3, The Economic Impacts of Inadequate Infrastructure for Software Testing, May 2002.

D. Galin, Software Quality Assurance: From Theory to Implementation, Pearson/Addison-Wesley (2004) B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

SoS MBSE Integration Methodology enables Rapid Capability Insertion

LCS SoS MBSE Integration Methodology Conclusion / Takeaway

- Enables the "come-as-you-are" approach to be rapidly acquiring capability from other Navy programs
- Has been proven with the RMH MM pilot to avoid costs and manage risks at the mission module / platform integration level
- Scales to multiple mission modules and multiple platforms
- Enables all stakeholders to manage their own systems and their own role in mission module / platform integration to cohesively satisfy the LCS fleet and sponsor

The Glue for the LCS MP Engineering Enterprise