The New P-Diagram

The Use of SysML Activity Diagrams to Support Taguchi Methods & Robust Design
Kate Konczal (ARDEC) & Michael Vinarcik (Booz Allen Hamilton)
Prepared for the 18th Annual NDIA SE Conference
• Taguchi Methods have been widely used to improve the robustness of engineered systems

• Parameter design classifies the inputs, outputs, and ideal functions of a system
 • P-Diagrams capture this information and provide a convenient framing mechanism

• Systems Modeling Language (SysML) activity diagrams can capture P-Diagrams

• A Model-Based Systems Engineering (MBSE) approach enables further analysis
 • Leverages traceability to support secondary work products (such as tables and dependency matrices)
 • Integrates a myriad of design characteristics from the system, subsystem, and components in one place: the system model
 • Enables information currency and consistency and makes this information available for continuous decision-making by the full spectrum of project stakeholders
• Developed by Genichi Taguchi, Taguchi Methods focus on:
 • Understanding the loss function of a system
 • Designing products so they are insensitive to variation ("robust")
 • Design of Experiments (DOE)
• Taguchi methods are widely used to deliver results
 • Automotive
 • Aerospace
 • Defense
 • Medical

Image Source:
Parameter Design

- Parameter design is the cornerstone of Taguchi’s robust design philosophy

- Parameter design:
 - Identifies the element-of-interest’s transfer function that translates inputs into desired system response
 - Requires careful analysis of inputs, outputs, control factors, and noise factors
 - Facilitates understanding of design and manufacturing variables (control factors) that may be adjusted to maximize the system’s robustness

- Properly executed, Parameter Design provides:
 - Robust system design
 - Optimal performance
 - Rigorous understanding of the control factor trade space
 - Impact to understanding/maturing requirements
Traditional P-Diagram Example

Raw Food, Heat (Input)

Outside Temperature, Rain, Bad Cook (Noise Factors)

Cooking Temperature, Time (Control Factors)

Cook Food

Properly Cooked Food (Desired Output)

Burned Food (Undesired Output)
Limitations of P-Diagrams

• P-Diagrams, as developed traditionally, are inherently limited because they:
 • Typically are rendered as a “picture” in Visio or Excel
 • Are stored locally
 • Require a “human-in-the-loop” to interpret and share the content
 • May not be traced to other system elements

• Solution: Emerging system modeling techniques can be applied to expose the analysis and content inherent in developing a P-diagram to a wider audience of stakeholders
• What is a Model?
 – “A simplified or idealized description or conception of a particular system, situation, or process, often in mathematical terms, that is put forward as a basis for theoretical or empirical understanding, or for calculations, predictions, etc.; a conceptual or mental representation of something.”
 – Oxford English Dictionary

• Why do engineers love them?
 – Reality is often too complicated to “deal with” directly
 – Abstraction hides complexity and facilitates analysis

Models Provide Cognitive Leverage
Why Model Based Systems Engineering?

- Systems Engineering “grew up” with the progressively more complicated and complex systems developed during the 20th Century.
 - Document-based
 - Empirical
- By the 1960’s, attempts were being made to inject mathematics into SE (e.g., Wymore’s “A Mathematical Theory of Systems Engineering: The Elements” in 1967)
- By the 1990’s, serious efforts were underway to apply modeling methodologies (Wymore’s “Model-Based Systems Engineering,” 1993)
• Other disciplines were harnessing increases in relatively inexpensive computing power to maximize productivity and conduct analyses that were impractical before:
 – Computer-Aided Design (CAD)
 – Computational Fluid Dynamics
 – Stamping simulations
 – Mold-flow analysis
 – And many others…

• Systems engineering focuses on dealing with the complexities of system-level behaviors, structure, requirements, and relationships
 – Better methods and tools were needed to capture and analyze them
 – The previously used manual process of administering technical information could now benefit from the efficiencies introduced by these improvements in technology
• In 2001, the International Council on Systems Engineering established a Model Driven Systems Design workgroup to customize UML for systems engineering

• By 2006, OMG adopted OMG SysML (the current version is 1.4, adopted in March 2014)

• SysML provides for the following diagram types, with numerous relationship available between model elements:
 – Behavioral Diagrams: Use case, Activity, Sequence, State Machine
 – Structural Diagrams: Block Definition, Internal Block, Package
 – Other Diagrams: Requirements, Package
• Other system modeling languages exist, but SysML is the most widely-adopted and has a thriving tool ecosystem

• A well-constructed system model unambiguously represents a system’s behavior, structure, and interrelationships between elements

• SysML fosters a “crispness” in the formulation of issues (according to David Miller, NASA Chief Technologist)

• Therefore, System Modeling is inherently compatible with Taguchi Methods
 – Functions/Operations are well-suited to capturing the content of a P-Diagram

• SysML tools allow the model content to be expressed as tables, matrices, and other derivative work products
Summary of Steps

1. Create P-Diagram Function generalized block
 - Used as a template for your functions

2. Create one operation for each function
 - These will be specialized P-Diagram Functions

3. Create a library of signals (parameters) to use for the inputs, outputs, controls, and noise factors

4. Populate function (operation) pins with the signals
 - Display flow on an activity diagram

5. Trace elements and generate secondary products
Use Case Diagrams

- Describe how the system is used
- Capture external systems and actors, goals, conditions, etc.
- Shows who participates in actions
- Are a useful starting point to capture system behaviors
Use Case Diagram Detail

- **Environment**
 - «Environmental effect»

- **Cook Food**
 - «extend»
 - (Smoking Required)
 - *extension points*
 - Smoking Required

- **Grill**
 - BBQ Operator

- **Food**
 - «Boundary system»

Unclassified: Approved for Public Release
Activity Diagrams

- Show the flow of events
- Show the flow of signals
- Capture Decision Points
- Represent functional activities with inputs/outputs
Operations (Input/Output/Return)

- In SysML a function is represented by an operation
 - Operations must be owned by a block
 - Operations may have one or many inputs and outputs parameters
 - Operations may also have only one return parameter
Using Signals for Inputs/Outputs

• In SysML, a *signal* is a model element used to type other model elements, such as:
 • *Ports*
 • *Input/output parameters*
 • *Information flows*

• By typing these elements, the modeling tool can check for consistency and ensure that compatible ports and parameters are connected

• Typing using signals allows for internal consistency and reduced manual inputs
 • For example, if you change the name of the signal, all the places it is used will also change
• SysML provides for the application of stereotypes to model elements

• Stereotyping signals is a useful method for classifying them

• Note that all subtypes (specializations) of the Noise Factor signal may satisfy requirements or ports that are typed with Noise Factor
A P-Diagram Function has been created as an operation

Its inputs and output parameters are typed with the appropriate signals
- The multiplicity for these parameters is set to [0..*]
 (they are optional, with no upper bound)
• Now that the P-Diagram operation has been defined, any other operation may specialize it
 – A specialized block inherits the properties of the generalized block
 – The specialized block (*Cook Food*) can redefine *P-Diagram Function*
The tool checks for compatibility between signals and pins. Mismatches are shown as an error.
Secondary Work Product: Tables

- Tables may be used to conveniently summarize the inputs, outputs, noise factors, & control factors
- These model elements may then be traced to other elements, such as:
 - Value properties
 - Requirements

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Function</th>
<th>Traced From</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burned Food</td>
<td>Undesired Output</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cooling Temperature</td>
<td>Control Factor</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gap Between Lid and Body</td>
<td>piece to piece variation</td>
<td>Cook Food</td>
<td>Lid-to-Housing Gap : length [millimetre]</td>
</tr>
<tr>
<td>4</td>
<td>Heat</td>
<td>Input</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Outside Temperature</td>
<td>environment</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Properly Cooked Food</td>
<td>Desired Output</td>
<td>Cook Food</td>
<td>Waterproof Electronics Housing</td>
</tr>
<tr>
<td>7</td>
<td>Rain</td>
<td>environment</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Raw Food</td>
<td>Input</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Time</td>
<td>Control Factor</td>
<td>Cook Food</td>
<td></td>
</tr>
</tbody>
</table>
A value property can be a control factor or a noise factor. These typically include a value and unit type.
Factors with Traces

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Type</th>
<th>Function</th>
<th>Traced From</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burned Food</td>
<td>Undesired Output</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cooked Food</td>
<td>Desired Output</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cooking Temperature</td>
<td>Control Factor</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gap Between Lid and Body</td>
<td>Piece to piece</td>
<td>Cook Food</td>
<td>Lid-to-Housing Gap : length [millimetre]</td>
</tr>
<tr>
<td>5</td>
<td>Outside Temperature</td>
<td>Environment</td>
<td>Cook Food</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
<td>Environment</td>
<td>Cook Food</td>
<td>1. Waterproof Electronics Housing</td>
</tr>
<tr>
<td>7</td>
<td>Raw Food</td>
<td>Input</td>
<td>Cook Food</td>
<td></td>
</tr>
</tbody>
</table>

- **Value property**
- **Derived rqmt**
Summary of Steps

1. • Create P-Diagram Function generalized block
 • Used as a template for your functions

2. • Create one operation for each function
 • These will be specialized P-Diagram Functions

3. • Create a library of signals (parameters) to use for the inputs, outputs, controls, and noise factors

4. • Populate function (operation) pins with the signals
 • Display flow on an activity diagram

5. • Trace elements and generate secondary products
System models are the most useful when they serve as a “single repository of truth”

As much relevant information as possible should be integrated into the model
- Maximize the benefit of the model
- Get the most out of secondary work products, such as tables and matrices
- Expose, analyze, and control the relationships between system elements

Tools and methods unburden, but do not replace, good engineering judgment

This presentation describes the methods to capture P-Diagram information in a manner that facilitates information integration and traceability using SysML