Final Report on the Study to Determine the Essential Elements of the Digital System Model

Prepared for the 18th Annual NDIA SE Conference 28 October 2015

Jeff Bergenthal

Co-Chair, NDIA Systems Engineering M&S Committee Johns Hopkins University Applied Physics Laboratory jeffery.bergenthal@jhuapl.edu 240-228-9593

Presentation Outline

- Background on the Digital System Model
- NDIA Systems Engineering Modeling and Simulation Committee Subcommittee on the Topic
 - Charter
 - Participants
 - Process
- Data Collection Templates
- Defining an Essential Element
- Modeling the Information
 - Overview of the Model
 - Model Excerpts
- Study Results and Benefits
- Availability of the Study Report and Model

- "The Digital System Model (DSM) is a digital representation of a defense system, generated by all stakeholders, that integrates the authoritative technical data and associated artifacts which define all aspects of the system for the specific activities throughout the system lifecycle."*
- Evolving, cohesive representation and unifying instantiation of the system across the acquisition lifecycle
 - Increase efficiency of activities and confidence in decisions
- Creation and evolution of the DSM will not require new methods or artifacts

* From the Defense Acquisition University Glossary

Subcommittee on the Essential Elements of the Digital System Model – Charter

- Define the essential elements of the Digital System Model as it evolves over the Defense Systems Acquisition Life Cycle
- Using the Identification of Modeling & Simulation Capabilities by Acquisition Life Cycle Phases as a basis:
 - For each major acquisition activity of each phase identify:
 - The data the digital system model must contain to support initiating that activity
 - The new (or updated) information that can be put in the digital system model at the conclusion of that activity
 - For each M&S capability that can support the major acquisition activities identify:
 - The data for running that M&S capability that should come from the digital system model
 - The data from the M&S results that should get put into the digital system model
- Identify existing standards, if any, for each essential element
- Provide a final report on the findings of the subcommittee

Subcommittee Members

- Jeff Bergenthal (JHU/APL, Study Lead)
- Tyesia Alexander (Engility)
- David Allsop (Boeing)
- Bill Beavin (Boeing)
- Curtis Blais (NPS)
- Alex Boydston (AMRDEC)
- David Bottcher (Boeing)
- Christina Bouwens (MSCI)
- Jim Coolahan (Coolahan Associates)
- John Daly (BAH)
- Steve Dam (SPEC Innovations)
- Bob Epps (Lockheed Martin)
- Tracee Gilbert (System Innovation)
- Allen Harvey (ARA)
- Greg Haun (AGI)
- George Hazelrigg (NSF)

- Craig Hugger (emSOLVE)
- David Kaslow (self)
- Jack Kelly (BAH)
- Claudia Kropas-Hughes (AFRL)
- Andrea Lora (Deloitte)
- Frank Mullen (SimVentions)
- Jane Orsulak (Raytheon)
- Chris Oster (Lockheed Martin)
- Greg Pollari (Rockwell Collins)
- Tim Tritsch (Engility)
- Crash Konwin (BAH)
- Hans Polzer (self)
- Frank Salvatore (Engility)
- Jayne Talbot (Raytheon)
- Bill Warner (Boeing)
- Beth Wilson (Raytheon)

Subcommittee Process

- Initial subcommittee formation at 20 August 2013 NDIA SE M&S Committee meeting
 - Formal Study Kick-Off at 11 February 2014 NDIA SE M&S Committee Meeting
- Sub-teams formed, one for each Phase of the DoD Acquisition Life Cycle
- Data collection spreadsheet designed and distributed
- Bi-weekly teleconferences scheduled
- Face-to-face meetings at numerous NDIA SE M&S Committee meetings
- Formal modeling of information initiated in May 2014

Data Collection Template (1 of 2)

Phase	Data Inputs Level 2	Acquisition/SE Activity Data Outputs	
Technology Maturation and	cost data for design, build, sustainment		update cost model and ID cost reduction
Risk Reduction			initiatives
	expected reliability	Development & technology risk reduction	update reliability growth curves and
	success criteria		validate or correct the KPPs
	For all and Architecture		
	Functional Architecture		Validated Functional Architecture
	Physical Architecture	System integration	Validated Physical Architecture
	Functional Interface Definition		Validated Functional Interface Definition
	Physical Interface Definition		Validated Physical Interface Definition
	Operational Concept		Validated Functional Transformations
	Functional Transformations		
	Performance		
	Requirements/Constraints		
	Operator Interface Definition		
	size, power, weight allocations to		rebalanced size, weight and power
	subsystems		allocations
	performance data		updated performance data
	allocations of reliability to subsystems		
	characteristics of usability		
	non-combat usecases	Decign	
	predicted non-recurring, recurring, and	Design	
	sustainment costs		
	tolerances (tooling) and variations		
	(commonality)		
	material constraints		
	test cases		
	functional allocation to prototype		feedback from characterizing functions ar
	performance expectations for	Prototyping	validated or corrected performance
	prototype system		
	SOS architecture, interfaces		identify emergent behaviors
	operational environment, CONOPS,		validated performance or performance
	validated scenarios, mission	Military utility assessment	gaps
	description, threat representation		

Data Collection Template (2 of 2)

Level 2 Acquisition/SE Activity	Data Inputs	M&S Capability	Data Outputs	
			Engineering-level simulation	
Development & technology risk reduction			Virtual system simulation	
			Mission-level simulation	
			Modeling of the natural environment	
			Engineering-level simulation	
System integration				
			Mission-level simulation	
			Virtual system simulation	
			Engineering-level simulation	
			Virtual system simulation	
			Modeling of the natural environment	
			Mechanical design modeling	
			Software modeling	
Design			Manufacturing process modeling/simulation	
			Reliability modeling	
			Maintenance simulation	
			Survivability simulation	
			Life-cycle cost modeling	
			Engineering-level simulation	
Prototyping			Mission-level simulation	
			Virtual system simulation	
Military utility assessment			Mission-level simulation	

Defining an Essential Element

- "Use" characteristics of a DSM essential element:
 - Required by an acquisition activity or M&S capability for all types of systems
 - Required to make decisions during the lifecycle
 - Used in more than one acquisition activity during the lifecycle
 - Used by more than one organization, or discipline, during the lifecycle
- "Impact" characteristics of a DSM essential element:
 - Required by DoD acquisition policies and/or best practices
 - If it is changed, it will impact other elements or the system
 - Required to complete all activities in the acquisition process
- An essential element of the DSM is information and/or data that:
 - if missing, prevents subsequent acquisition activities from being performed; or
 - is required to make decisions at formal Decision Points and Milestone Decisions identified in the acquisition life cycle.

- Spreadsheets quickly became too cumbersome
 - Integrating the data was challenging
 - Analyzing the data was difficult
- Offer from Steve Dam, SPEC Innovations, for free use of Innoslate® by the entire Study Team
- Demonstration session and development of initial set of modeling conventions
 - Modeling conventions have continued to evolve
- Technical interchange with MITRE on the Acquisition Guidance Model (AGM)
 - Useful information contained in AGM that can be folded into the model the Study Team is developing

Overview of the Model

- All phases of the DoD acquisition lifecycle
- 283 distinct acquisition and modeling & simulation activities
- 7 milestones / decisions
- 588 distinct input/output items
 - 211 of which have been tagged as "essential elements"

Conduct Analysis of Alternatives

Key Performance Parameters

Manufacturing Procedures

Life Cycle Sustainment Plan (LCSP)

- Provides guidance to Government contracting officers and program managers:
 - Identifies the data and information that Government produces and Industry needs
 - Identifies the data and information that Industry produces and the Government needs
- Formal model provides a platform for further analysis:
 - Identifying areas where the digital system model can impact the effectiveness of the acquisition process
 - Guiding improvements in how modeling and simulation capabilities and data can better support the digital system model and the acquisition process
 - Assessing how potential changes to the acquisition process will affect the generation and use of the data and information contained within the digital system model

Availability of the Study Report and Model

- Complete the Study Final Report
 - Anticipate completion in December 2015 followed by the NDIA internal review / approval process
- The model will be made available in two forms:
 - A static view for those who want to look at the model most likely in .pdf format
 - A format that will allow individuals to use the model data most likely in MS Excel format
- Anticipate making annual updates to the model to incorporate feedback provided by the community
- Approved Final Report and the model will be posted on M&S Committee website

Questions?