

NDIA JSPE 2015 Cincinnati, OH

26 AUG 15

DISRUPTIVE INNOVATION: INI POWER SYSTEMS

Larry J. Markoski-CEO INI Power NDIA Joint Service Power Expo 2015

Cincinnati, OHIO

Session 11: Generators/Man portable (South Meeting Rooms 232-233)

INI Power Systems, Inc. 175 Southport Drive, Suite 100 Morrisville, NC 27560 © 2015

ABOUT INI Power Systems

Who we are

- Small U.S. Business in Morrisville, NC
- DOD Operational Energy focus

What we do

- Bridge Operational Energy Capability Gaps
- SOLVE WARFIGHTER PAIN POINTS!!

U Why we do it

- Support the Warfighter
- Enhance Combat effectiveness

How we do it

- Boots on the ground observation
- Closed loop innovation strategy

OPERATIONAL ENERGY MANDATES

Reduce JP-8 /Log Tail

Lighten the Load

a) Weight \approx fuel and maintenance

Enhance Combat/Mission Effectiveness

- a) Safe/Simple/Reliable solutions
- b) Easy for operator to maintain
- c) Field maintainable / Field sustainable

INI's Internal Definition

Disruptive Innovation=

<u>Rapid</u> iterative development of <u>cost effective</u> material <u>solutions</u> that successfully <u>bridge</u> capability <u>gaps</u> while fulfilling established and emerging <u>requirements</u>


1MPG Capability Gap Emerges

Paradigm Shift from primary to rechargeable batteries to reduce logistics burden and cost:

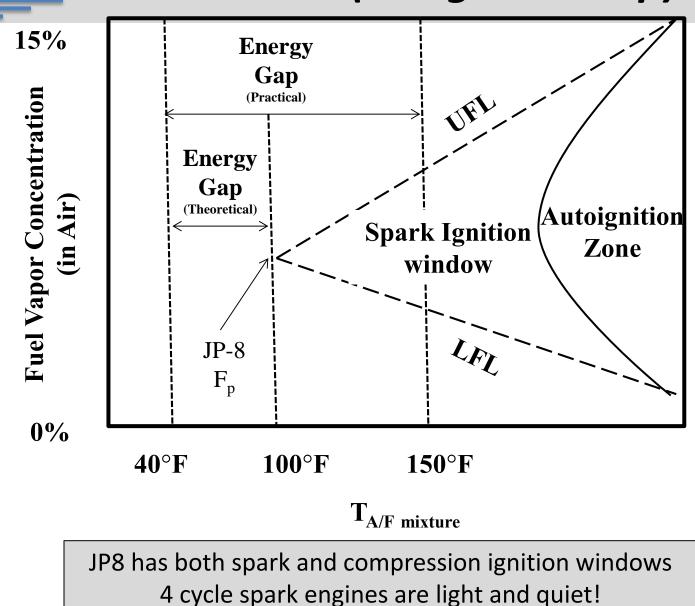
- FY12 52% of DOD battery spend on rechargeables compared to 26% in FY05
- □ Handheld rechargeable mobile devices become ubiquitous and typically require less than 50W to recharge
- □ DOD battery chargers require 50-300W max power
- The smallest DOD generator is sized for 2kW and weighs 145lbs
- □ Wetstacking becomes common DOD terminology

Capability gap emerges for a reliable DOD generator with the following emerging requirements:

- □ weight <45lbs (one man portable)
- □ Right sized to the battery charger critical
- □ Produces 300W of minimum sustained power
- Quiet is better than loud
- □ Must be JP8 compatible

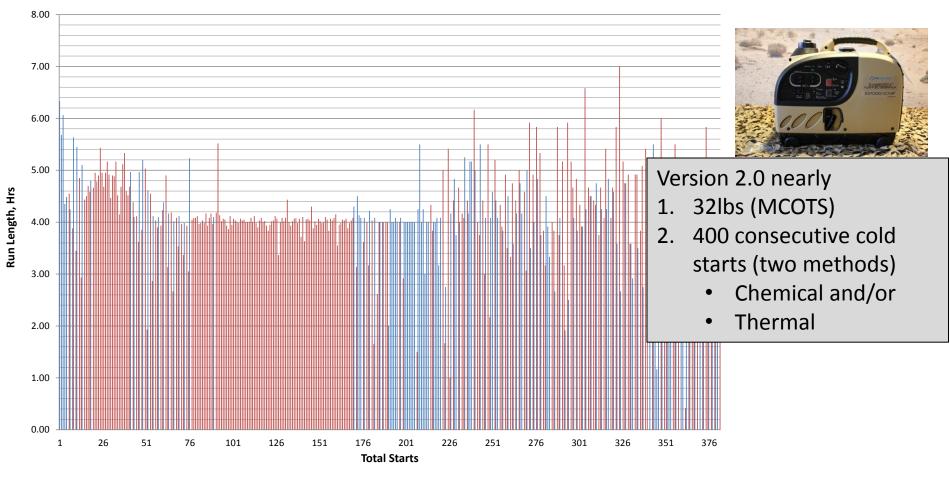
One Fuel Forward Requirement

DOD Directive 4140.3 (1988) – 'Single Fuel on the Battlefield' initiative


• Jet Fuel differences:

- JP-8 properties
 - < 3000 ppm sulfur; variance allowed in fuel properties including cetane number and distillation curve
 - Referee grade more specific
- JP-8 is Jet-A1 with three additives
 - fuel system icing inhibitor (**MIL-DTL-85470**), corrosion inhibitor and lubricity enhancer (**MIL-PRF-25017**), and static dissipator additive

- Jet-A1 has lower freeze point than Jet-A (-53 F vs. -40 F)


JP-8 and Spark Ignition Engines (Bridge the Gap)

One Man Portable Flex Fuel Generator (1MPG)

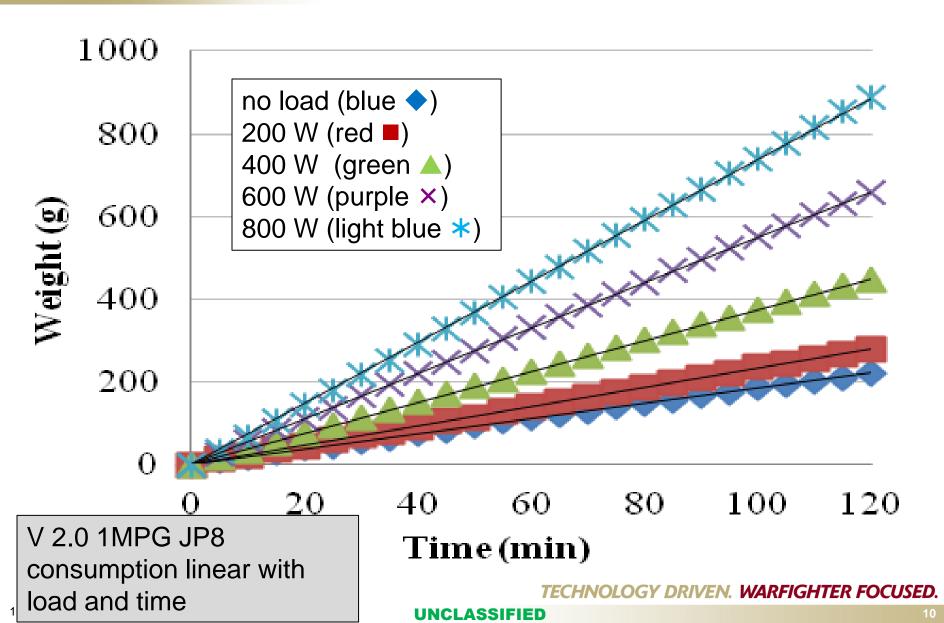
Start Count and Run Length, Unit 1 Total Starts: 381, 25 May – 27 Nov 2012 133 Cold Starts, Ether Required
248 Restarts, Ether not Required

-20°C Cold Start

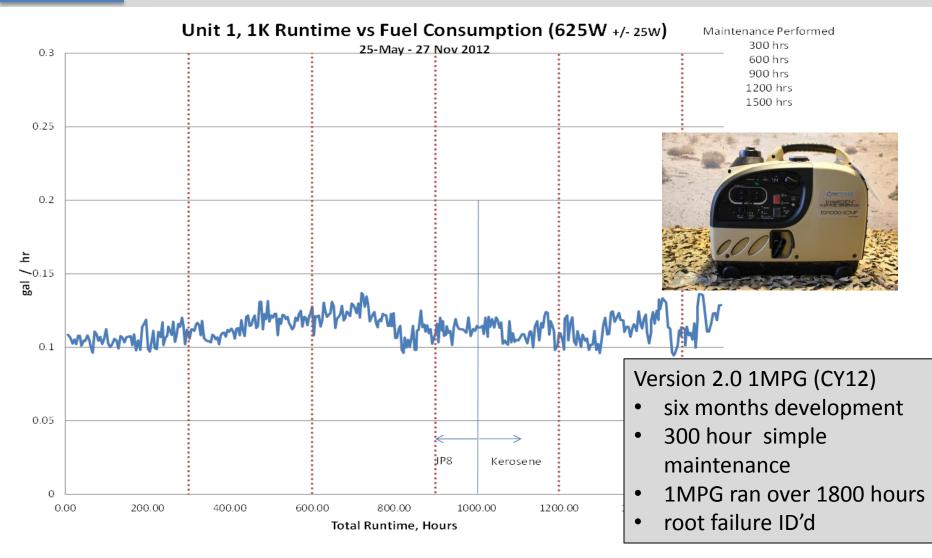
One Man Portable Flex Fuel Generator (1MPG)

Third Party Validated at Temperature Extremes:

Performance Measurements


Battery Charging at 110°F

UNCLASSIFIED


Fuel Consumption

One Man Portable Flex Fuel Generator (1MPG)

1MPG Lessons Learned V2.0/2.1

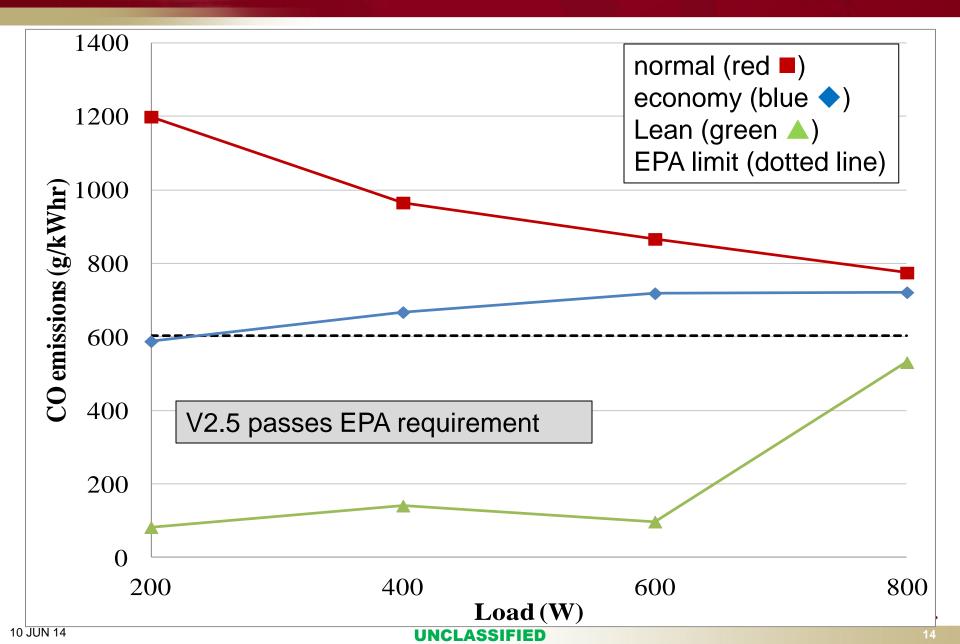
V 2.0/2.1 conclusions

- ✓ JP8 requirement validated with 4 cycle spark engine
- ✓ Weight requirement validated
- ✓ Power requirement validated
- ✓ Fixed jet carburetor provides long life time with simple routine maintenance cycles
- ✓ NIE 14.1 favorable DP3

New or emerging requirements for V2.5

- 1) Need simple method to tune A/F ratio in the field
 - a) Lifetime improvements
 - b) EPA emissions/combustion efficiency
 - c) High altitude battery charging
- 2) F-24 validation(CONUS)

INI Intelli 1kW Flex Fuel Gen v2.5



UNCLASSIFIED

CO Emissions

Test Plan

Purpose:

- Verify INI Intelli 1kW Flex Fuel Generators v2.5performance improvements over v2.1
- Verify flex-fuel capabilities

Three Tests:

- Test 1 (8-11 DEC 2014) v2.5/multi-fuel verification
- Test 2 (5-10 JAN 2015) v2.5 atmospheric testing
- Test 3 (09-12 FEB 2015) Company Charging Capacity Test

Test 1

- At Tobyhanna Army Depot Generator Shop
- 08-11 December 2014
- Verification of v2.5 configuration and its ability to flex fuels

SOLDIER

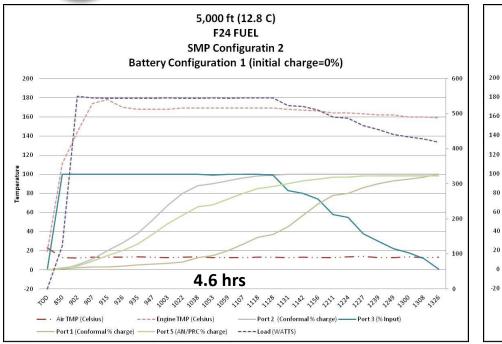
Test 1 - Metrics

Date	FUEL (ml)	Fuel Consumed (ml)/GEN	AVG Total Run Time/GEN	AVG Tank Run Time (2500ml/.66gal)	AVG ml/hr	AVG GAL/Hr
8-Dec	JP-8	5000	11:31	6:21	430	0.11
9-Dec	DF-1	3000	7:51	7:20	378	0.10
10-Dec	GAS	2750	6:35	5:32	425	0.11
11-Dec	Kero	3500	8:29	6:35	413	0.11

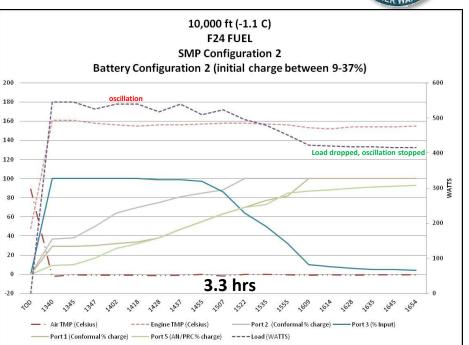
Date	FUEL (ml)	AVG ENGINE RUN TIME (hrs)		AVG OUTPUT (Volts)	AVG LOAD (Amps)	AVG LOAD (Watts)	AVG HOSE TEMP (C)
8-Dec	JP-8	11.6	159.5	122.3	4.9	599.4	104.5
9-Dec	DF-1	7.9	156.2	122.2	4.9	599.9	97.0
10-Dec	GAS	6.5	161.1	122.3	4.7	573.2	97.5
11-Dec	Kero	8.5	163.7	122.2	4.9	599.7	104.2

1MPG V2.5 flex fuel validated for short durations

Test 2

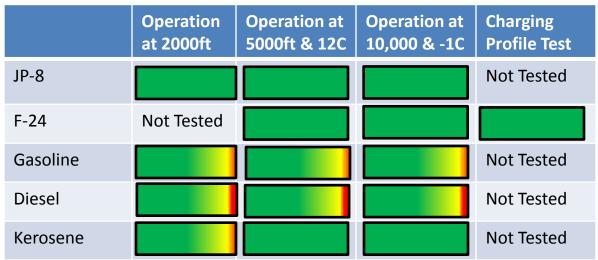


- Electronic Proving Grounds Environmental Test Facility
- 05-10 January 2015
- v2.5 Atmospheric testing (simulating 5000 feet & 10,000 feet)
- In parallel with the SPM-622 atmospheric testing


Test 2 Day 2 – F-24

- 5K altitude and ambient temp had no effect on running with F-24, generator performed very well
- Similar SPM battery charging pattern pulling 120W load for battery charging at ambient temperature
- 400W Light load remains constant

- 10K altitude had an affect on power production indicated by engine rpm and output power oscillation*
- When load dropped below ~420W oscillation stopped*
- Similar SPM battery charging pattern pulling 120W load for battery charging at freezing
- 400W light load remains constant



Generator Testing Key Finding

Test 1: S/N	01074 – 66.7 hrs
	01076 – 62.9 hrs
	01077 – 62.4 hrs
<u>Test 2: S/N</u>	<u>00991 – 40.2 hrs</u>
Total	232.2 hrs

- v2.5 is a marked improvement over v2.1
- Runs best with F-24 or JP-8
- Operator experience key to optimal performance
 - Tweaks necessary for flexing fuels and high

- altitude performance
- Flexing fuels comes with a maintenance cost
 - Oil changes become more frequent at much shorter intervals
 - Increase in random spark plug failures

* yellow indicates maintenance problems, red indicates eventual engine failure if PM not performed within 8-12 hours

1MPG Lessons Learned V2.5

V 2.5conclusions

- ✓ F24 requirement validated with 4 cycle spark engine
- ✓ JP8/F24 validated at high elevations and battery charging
- ✓ A/F tuning works well
- ✓ EPA small engine requirements met Need some tweaks for D1/D2

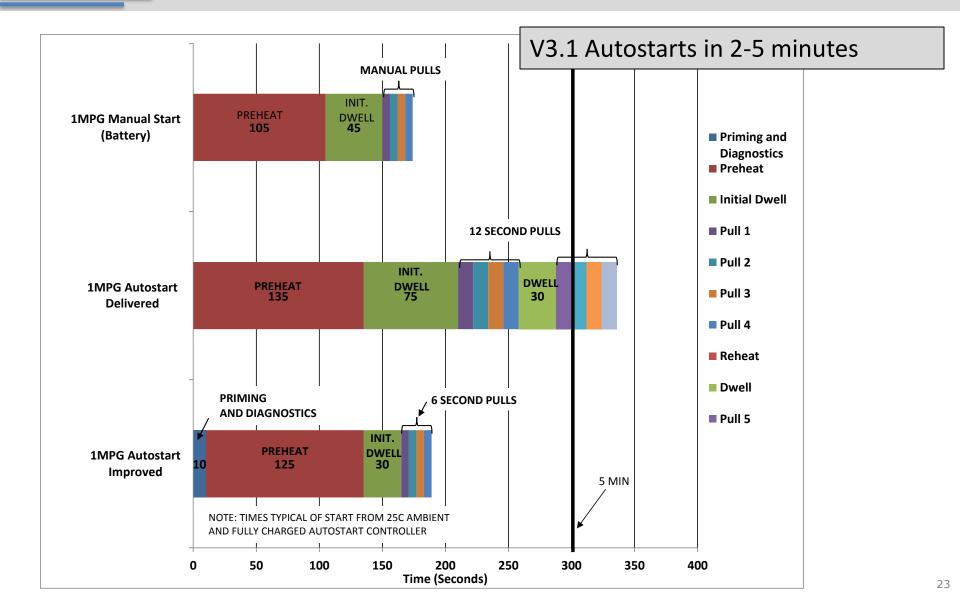
<u>New or emerging requirements for V3.1</u> USMC Autostart on JP8 from 0-40°C in less than 5 minutes USMC One man portable Autostart kit

USMC 1MPG POTENTIAL SYSTEM CONFIGURATIONS

Manual Start (manned)

1) Chemical Start: -20-55°C

2) Thermal Start: 0-40°C



Electric/Auto Start (unmanned)

3) Autonomous Thermal Start: 0-40°C

1MPG AUTOSTART ON JP8

1MPG Lessons Learned V3.1

V 3.1 conclusions

- ✓ Autostart validated 3-5 minute start-up
- ✓ KPPs met for USMC 1MPG
- ✓ POR downselect

New or emerging requirements for V3.5 (PPG) <30lbs 900W continuous power 28VDC (10A)

CONCLUSIONS

Keys to a successful disruptive innovation process:

- Identify the capability gap
- Embrace the requirements
- Lean forward with emerging requirements
- The faster you can iterate....the faster you can innovate
- Don't overlook the obvious
- Don't be afraid to fail!

ACKNOWLEDGEMENTS

- 1. US ARMY CERDEC
 - a) Early Funding
 - b) Testing/SAR development
- 2. US ARMY Rapid Equipping Force (REF)
 - a) Safety confirmation
 - b) Emerging requirements
- 3. US ARMY PM Soldier Warrior (SWAR)
 - a) Performance validation
 - b) Requirements development
- 4. Marine Corps Systems Command (MCSC)
 - a) Well defined and achievable KPPs
 - b) Supporting small business
- 5. The entire INI Power Systems Team

