

Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies®

a division of Energy Technologies, Inc.

233 Park Avenue East Mansfield, OH 44902-1845

pdmadden@ruggedsystems.com tdlowe@ruggedsystems.com

www.HybridEnergyTechnologies.com

Hydrogen Fuel Reformation System

Typical Hydrogen Production

- A process called "reforming" can be used to produce hydrogen from various materials.
- Steam Reformation is the most commonly used today. This process typically uses nonrenewable natural gas as its feedstock and is energy intensive.
- The hydrogen produced is typically only 70% pure, requiring additional processing for many applications.
- Steam Reformation produces CO₂. For every ton of hydrogen, 11 tons of CO₂ are produced.
- By using a non-renewable feed stocks and producing greenhouse gas, the hydrogen produced by Steam Reformation is often referred to as "brown hydrogen".
- States are now starting to mandate that 33% of all H₂ production be from renewable sources. This hydrogen is referred to as "green hydrogen"

Hydrogen Fuel Reformation System

Hydrogen Infrastructure

• The existing hydrogen infrastructure in developed countries is minimal and nearly nonexistent in less developed countries.

• Steam Reformer plants are usually large, stationary facilities to keep the cost per kilogram down. They are typically located near the largest users, i.e. steel and chemical industries.

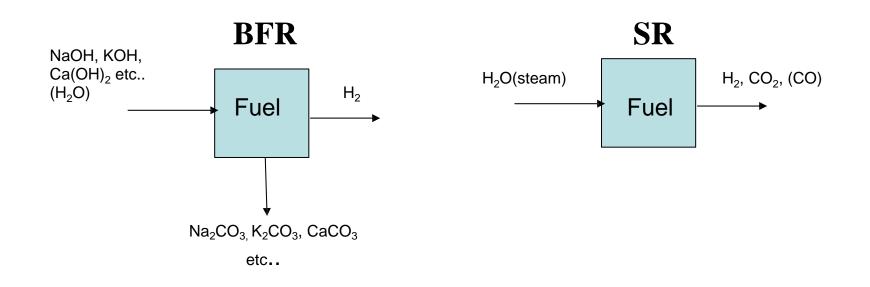
• The majority of hydrogen users do not use enough to justify the large capital expense associated with the Steam Reformer. This multitude of smaller hydrogen users comprise the merchant market. To serve this market, the hydrogen is typically liquefied and put in specialized tanker trucks. At depots, the hydrogen is then returned to the gaseous state at various pressures, put into cylinders and delivered by other trucks.

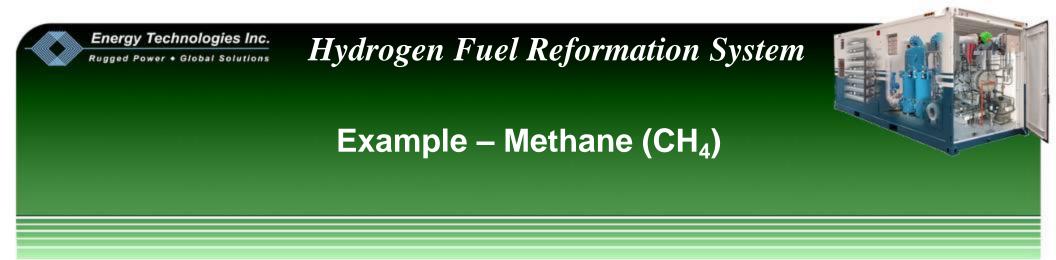
• All of this results in the hydrogen delivered to the merchant market having its cost increased 2-5 times.

Hydrogen Fuel Reformation System

Hydrogen Production From Multiple Feedstock Categories

• ETI and its collaborators have developed a new reformation process that allows the use of a multiple of feedstocks including renewables to produce hydrogen.


• ETI's modular and scalable Hydrogen Fuel Reformation System[™] (HFRS) will allow the production of hydrogen at or near the point of use, reducing or avoiding the transport costs.


• The HFRS typically produces 98-99% pure hydrogen avoiding any additional clean up processes.

- The HFRS reaction does not produce or release CO or CO₂ to the atmosphere.
- For all of these reasons, the hydrogen produced by this process is truly "green hydrogen".

- f Alkaline material is used as a reactant in the reformation process
- $f \square \bullet$ Carbonate is formed as a by-product instead of CO_2

Base-Facilitated Reforming $CH_4 + 2NaOH + H_2O \leftrightarrow Na_2CO_3 + 4H_2$

Steam Reforming

 $CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$

 $CH_4 + H_2O \leftrightarrow CO + 3H_2$ $CO + H_2O \leftrightarrow CO_2 + H_2$ Gas Shift $CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$

Hydrogen Fuel Reformation System

Example – Methanol (CH₃OH)

Base-Facilitated Reforming $CH_3OH + 2NaOH \leftrightarrow Na_2CO_3 + 3H_2$

Steam Reforming $CH_3OH + H_2O \leftrightarrow CO_2 + 3H_2$

 $\begin{array}{l} CH_{3}OH \leftrightarrow CO + 2H_{2}\\ CO + H_{2}O \leftrightarrow CO_{2} + H_{2} & Gas \ Shift\\ \hline\\ CH_{3}OH + H_{2}O \leftrightarrow CO_{2} + 3H_{2} \end{array}$

Example – Ethanol (C₂H₅OH)

Base-Facilitated Reforming $C_2H_5OH + 4NaOH + H_2O \leftrightarrow 2Na_2CO_3 + 6H_2$

Steam Reforming $C_2H_5OH + 3H_2O \leftrightarrow 2CO_2 + 6H_2$

 $C_{2}H_{5}OH + H_{2}O \leftrightarrow 2CO + 4H_{2}$ $2CO + 2H_{2}O \leftrightarrow 2CO_{2} + 2H_{2}$ Gas Shift $C_{2}H_{5}OH + 3H_{2}O \leftrightarrow 2CO_{2} + 6H_{2}$

Hydrogen Fuel Reformation System

Example – Glycerol $(C_3H_5(OH)_3)$

Base-Facilitated Reforming $C_3H_5(OH)_3 + 6NaOH \leftrightarrow 3Na_2CO_3 + 7H_2$

Steam Reforming

 $C_3H_5(OH)_3 + 3H_2O \leftrightarrow 3CO_2 + 7H_2$

 $\begin{array}{ll} C_{3}H_{5}\left(OH\right)_{3} \leftrightarrow 3CO + 4H_{2} \\ 3CO + 3H_{2}O \leftrightarrow 3CO_{2} + 3H_{2} \end{array} \hspace{1.5cm} Gas \hspace{0.1cm} Shift \end{array}$

 $C_3H_5(OH)_3 + 3H_2O \leftrightarrow 2CO_2 + 6H_2$

Hydrogen Fuel Reformation System

Example – Glucose $(C_6H_{12}O)_6)$

Base-Facilitated Reforming

 $C_6H_{12}O_6 + 12NaOH \leftrightarrow 6Na_2CO_3 + 12H_2$

Steam Reforming

 $C_6H_{12}O_6 + 6 H_2O \leftrightarrow 6CO_2 + 12H_2$

 $\begin{array}{ll} C_6H_{12}O_6 &\leftrightarrow 6CO+6H_2\\ 6CO+6H_2O &\leftrightarrow 6CO_2+6H_2 \end{array} \hspace{1.5cm} \text{Gas Shift} \end{array}$

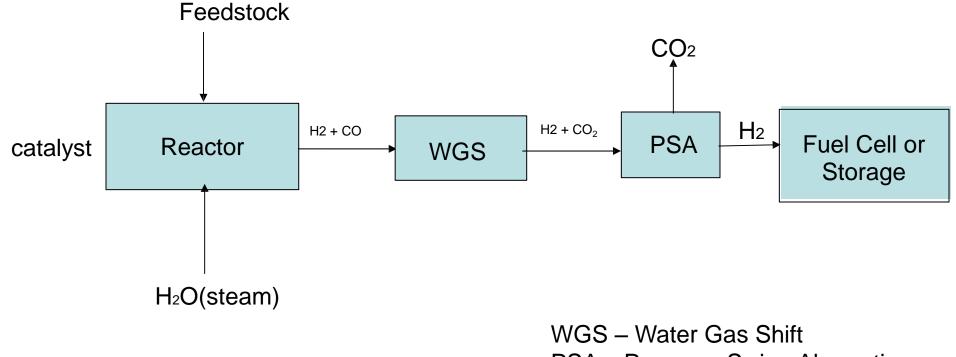
 $C_6H_{12}O_6 + 6H_2O \leftrightarrow 6CO_2 + 6H_2$

Hydrogen Fuel Reformation System

Example – Cellulose $(C_6H_{10}O_5)_n$)

Base-Facilitated Reforming

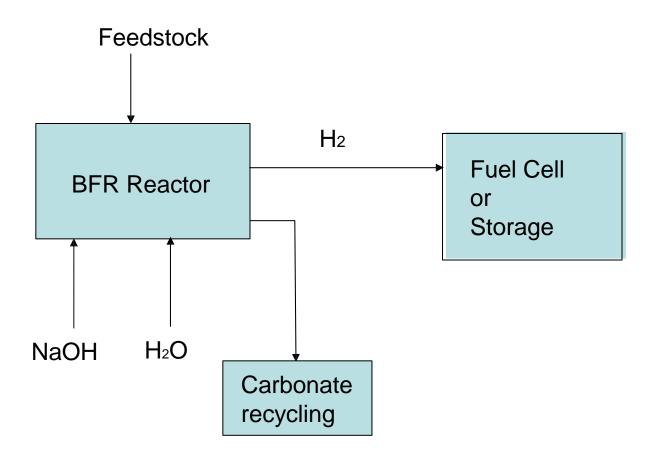
 $(C_6H_{10}O_5)_n + 12nNaOH + nH_2O \leftrightarrow 6nNa_2CO_3 + 12nH_2$


Steam Reforming

 $(C_6H_{10}O_5)_n + 7nH_2O \leftrightarrow 6nCO_2 + 12nH_2$

 $\begin{array}{ll} (\mathrm{C}_{6}\mathrm{H}_{10}\,\mathrm{O}_{5})_{\mathrm{n}} + \mathrm{n}\mathrm{H}_{2}\mathrm{O} \leftrightarrow 6\mathrm{n}\mathrm{CO} + 6\mathrm{n}\mathrm{H}_{2} \\ 6\mathrm{n}\mathrm{CO} + 6\mathrm{n}\mathrm{H}_{2}\mathrm{O} \leftrightarrow 6\mathrm{n}\mathrm{CO}_{2} + 6\mathrm{n}\mathrm{H}_{2} & \text{Gas Shift} \end{array}$

 $(C_6H_{10}O_5)_n$ +7nH₂O \leftrightarrow 6nCO₂+12nH₂



PSA – Pressure Swing Absorption

Hydrogen Fuel Reformation System

Base-Facilitated Reformation Process Simple One Step Reaction to High Purity Hydrogen

Hydrogen Fuel Reformation System

Base-Facilitated Reforming More Favorable Thermodynamics Lower Operating Temperatures

Gibbs free energies ΔG° are significantly lower in the BFR process compared to Steam Reforming – Lower reaction temperatures

Fuel	ΔG° (Kcal/mole)	Reaction temperature (°C)
CH ₄ (SR)	+31.2	900
CH ₄ (BFR)	+0.55	300
CH ₃ OH (SR)	+2.2	350
CH ₃ OH (BFR)	-28.5	120
$C_2H_5OH(SR)$	+23.3	800
C ₂ H ₅ OH (BFR)	-38.3	130
$C_6H_{12}O_6(SR)$	-8.2	900
$C_6H_{12}O_6(BFR)$	-192	220

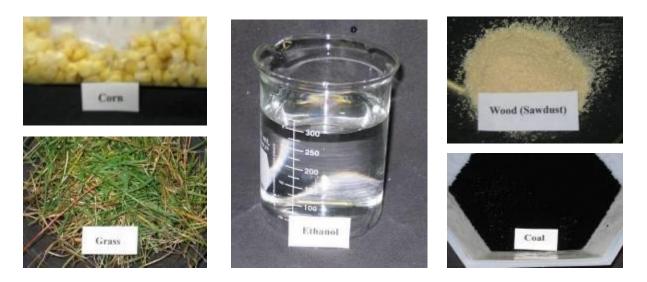
Hydrogen Fuel Reformation System

Base-Facilitated Reforming More Favorable Thermodynamics Lower Heat Requirement

Enthalpies ΔH° are significantly lower in the BFR process compared to Steam Reforming – Lower heat of reaction and higher efficiencies

	Fuel	ΔH°(Kcal/mole)	Efficiency(%)
CH ₄ (SR)	Methane	+60.5	92
CH ₄ (BFR)	Methane	+12.9	113
CH ₃ OH (SR)	Methanol	+31.5	94
CH ₃ OH (BFR)	Methanol	-9.7	114-121
$C_2H_5OH(SR)$	Ethanol	+83.3	92
C ₂ H ₅ OH (BFR)	Ethanol	+1.0	117
$C_6H_{12}O_6(SR)$	Glucose	+150.2	92
$C_6H_{12}O_6(BFR)$	Glucose	-96.8	114-136
$C_{12}H_{22}O_{11}(SR)$	Sucrose	+213.4	91
C ₁₂ H ₂₂ O ₁₁ (BFR)	Sucrose	-291.3	112-136
$C_6 H_{10} O_5(SR)$	Cellulose	+146.1	90
$C_6H_{10}O_5(BFR)$	Cellulose	-169.3	112-153

Hydrogen Fuel Reformation System


Advantages of BFR Process

- One step reaction making reformer design simpler
- No CO or CO₂ gases formed Water gas shift and PSA not necessary.
- Pure hydrogen is formed.
- Greener process CO_2 sequestered as a carbonate (i.e. Na_2CO_3)
- Lower operating temperatures.
- Operation in liquid phase is possible.
- Batch or continuous operation possible
- Lower heat (ΔH°) required for reforming so more efficient and less expensive operation
- Can be used to reform variety of fuels. Reforming renewable fuels a major advantage.

Hydrogen Fuel Reformation System

Reformation Fuels Demonstrated

Examples of Fuels Reformed by ETI's Base-Facilitated Reformation

Alcohols: Methanol, Ethanol, Crude Ethanol, E95, Ethylene Glycol, Glycerol (from bio-diesel plant) Sugars, Starches: Glucose, Fructose, Starch (Corn starch, Potato starch), Food wastes Fossil Fuels: Methane (Natural Gas, Landfill Gas, Bio-Gas), Coal

Biomass: Grass, Sawdust, Woodchips, Corn, Potato Peels, Cellulose, Hemicelluloses (Xylan from Beachwood), Lignin (Organosolv), Fryer Oils Municipal Solid Waste (MSW): Paper

Reactors For Base-Facilitated Reformation

Batch

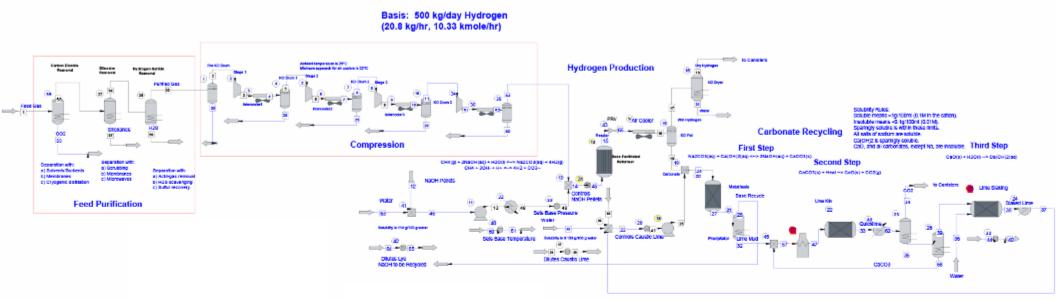
Lab Batch reactor 100 ml open volume (rate: 3L H₂/hr for 0.5hrs)

Semi-Continuous

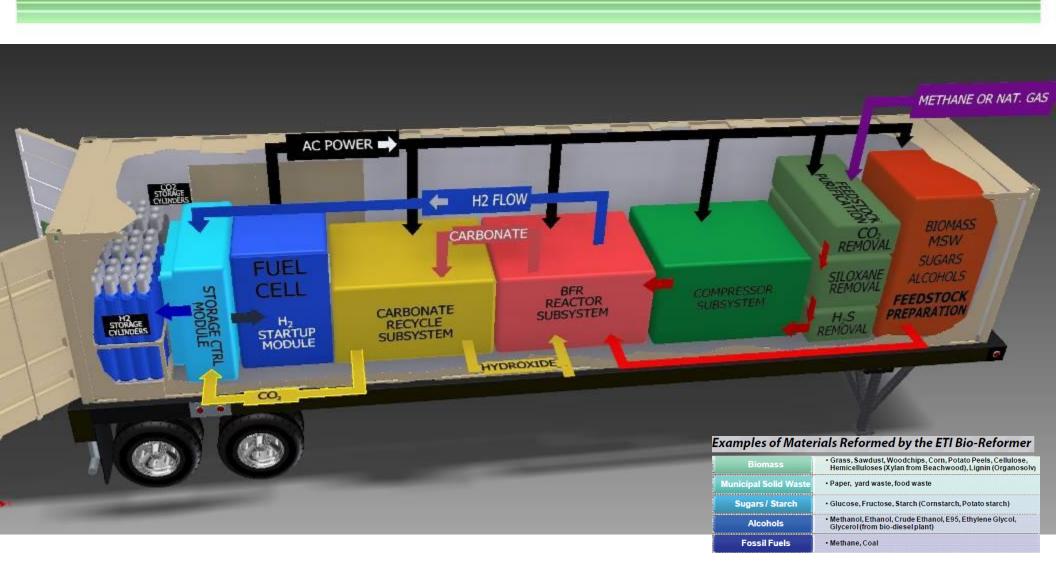
Semi-Continuous reactor with storage tank 4L open volume (rate: 10L H₂/hr for 8 hrs)

Continuous

Continuous reactor producing H₂ (rate: 100L/hr as long as needed)



Prototype 10 kg H₂/day Base-Facilitated Solid Biomass Fluidized Bed Reactor

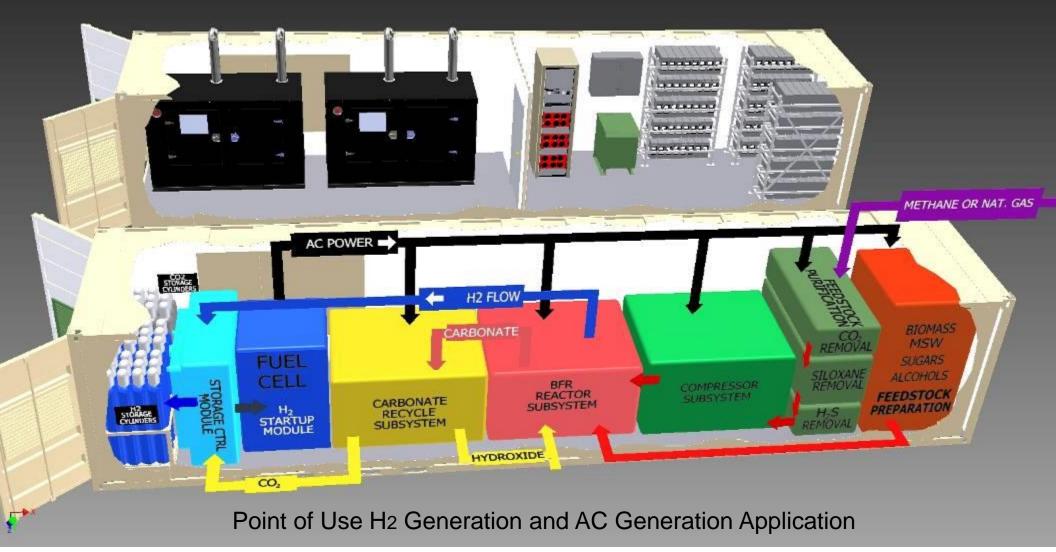

100 Kg, 500 Kg, 1500 Kg & 2000 Kg of H2 Per Day Line Drawing

Configured for recycle of Carbonate into Pure CO₂ for market sale and Hydroxide returned to input as makeup. Module size and cost can be reduced if Carbonate is disposed as waste to landfill or sold.

Hydrogen Fuel Reformation System

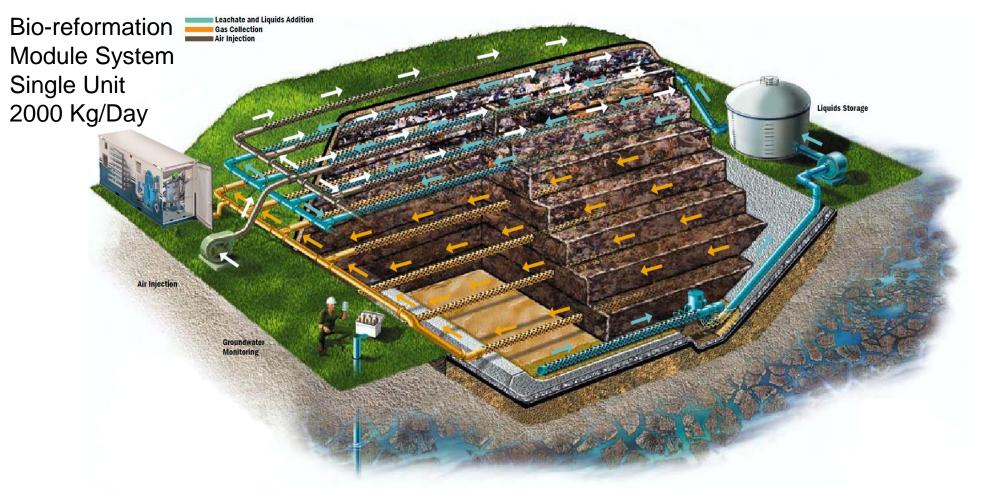
Mobile HFRS Packaged System

Containerized HFRS Packaged System

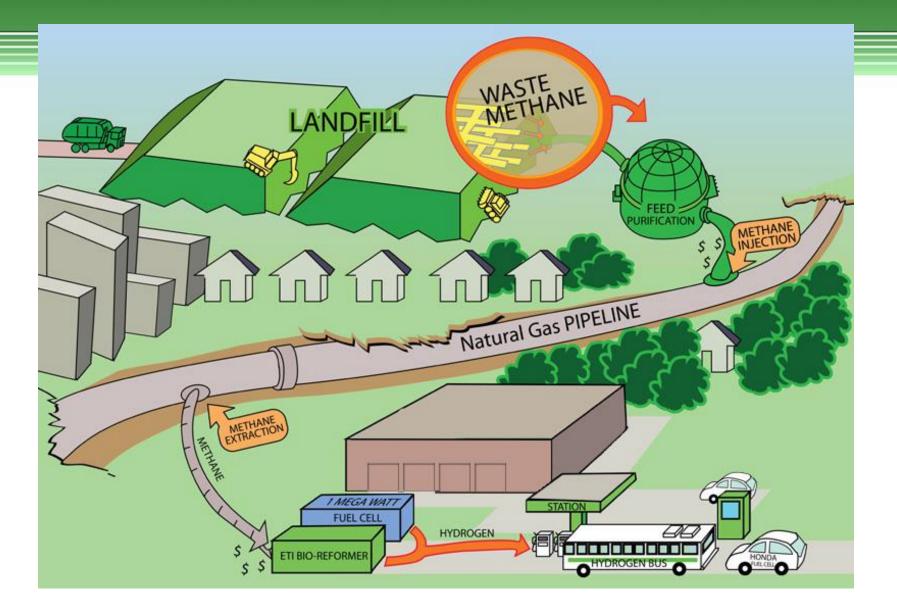


Scalable up to 2000 kg of H₂ Per Day

Modules can operate in parallel for greater capacity.



Applications and Configurations



Hydrogen Fuel Reformation System

Applications and Configurations Landfill Site H₂ Generation, Storage and Distribution

Hydrogen Fuel Reformation System

DOE/FTA Fuel Cell Bus Projects

Both DOE and the Federal Transit Administration (FTA) fund NREL's hydrogen and fuel cell evaluations. A joint plan describes these evaluations, and the table below summarizes both current and planned DOE- and FTA-funded projects.

~						ons for DOE and									0.0		_
Demonstration	State	City	# Buses	2014		2015				2016				2017			
				3	4	1	2	3	4	1	2	3	4	1	2	3	4
ZEBA Demonstration *	CA	Oakland	12	AC Transit													
	CA	Thousand Palms	1	SunLine													
	NY	Ithaca	1		TCAT												
American Fuel Cell Bus (AFCB) *	OH	Canton, Cleveland	2	SARTA/GCRTA													
	CA	Irvine	1		UCI							1					
AFCB (TIGGER)	MI	Flint	1		Flint MTA												
	CA	Thousand Palms	2	SunLine													
Birmingham FCEB *	AL	Birmingham	1	BJCTA													
Massachusetts AFCB *	MA	Boston	1					M	BTA					1 1		<u> </u>	
Advanced Composite FCEB *	TX	Austin			2	C	apital	Metro				4				10	
Advanced Composite FOEB	DC	Washington								DCDOT							
Next-gen Compound Bus *	CA	San Francisco	1			SFMTA											
Battery Dominant AFCB *	CA	Thousand Palms	1	SunLine						Line							
* National Fuel Cell Bus Program	project	Color coded by Design Strategy:			Ba	attery	domin	nant hy ant hyl with fu	orid (elect	ric	for a	ccess	ories			

Energy Technologies Inc.

Hydrogen Fuel Reformation System

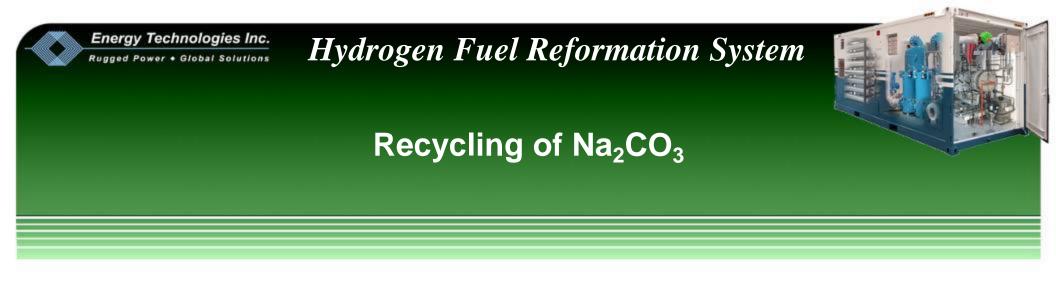
Hydrogen Vehicle Introductions

- Toyota (US Introduction in 2015)
- Honda (US Production in 2016)
- Hyundai (US Introduction 2014)
- Other companies, like General Motors, Ford, and Audi are working on similar cars.

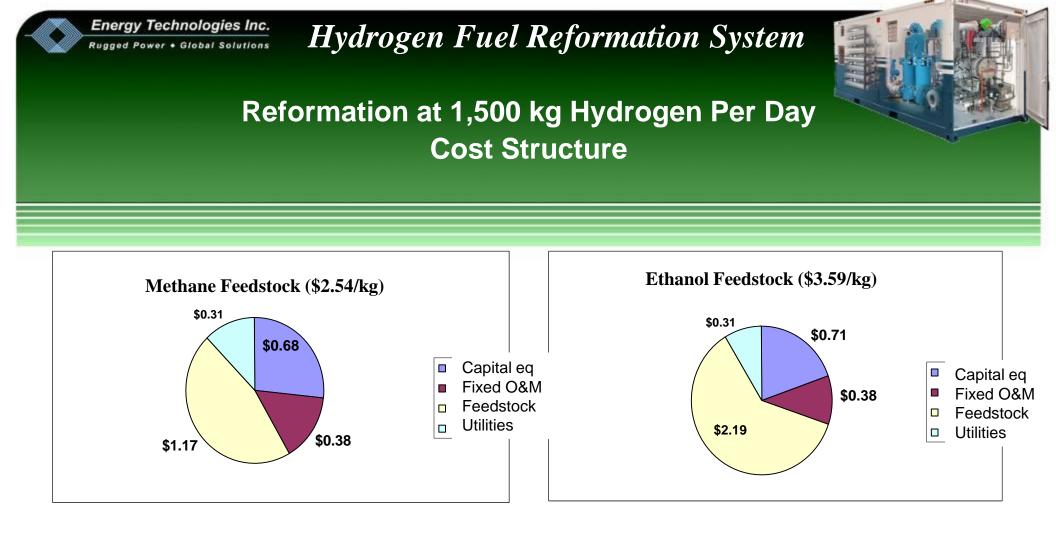
Remote Site H2 Generation, Storage and Distribution

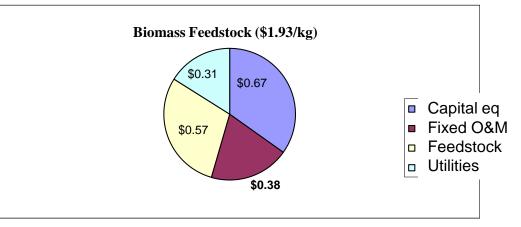
Distribution of H2 Storage Module to Mobile Refueling Vehicle & Permanent Station

Mobile H2 Distribution for Vehicle and Bulk Station Refueling


By-Product (carbonate) Recycling

Hydrogen Fuel Reformation System


What do we do with solid carbonate?


- Disposal of carbonate to sequester CO₂
- Use the carbonate to generate pure CO_2 for various industrial applications (soda, liquid fuel synthesis, etc..)
- Sell Na₂CO₃ or CaCO₃ for various industrial applications (i.e. glass)
- Recycling back to hydroxide

- $f \cdot Na_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2NaOH$
- $f CaCO_3^{heat} \rightarrow CaO + CO_2$
- $f CaO + H_2O \rightarrow Ca(OH)_2$

Recausticizing - a common commercial process in the paper mill industry

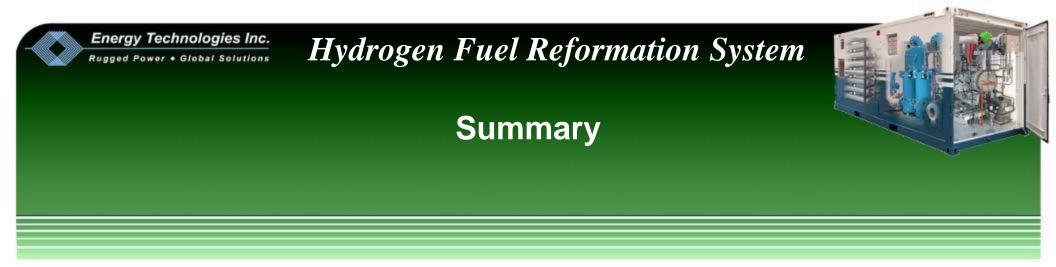
Energy Technologies Inc.

Hydrogen Fuel Reformation System

Economics of Base-Facilitated Reformation

f• Used the DOE H2A economic analysis tool

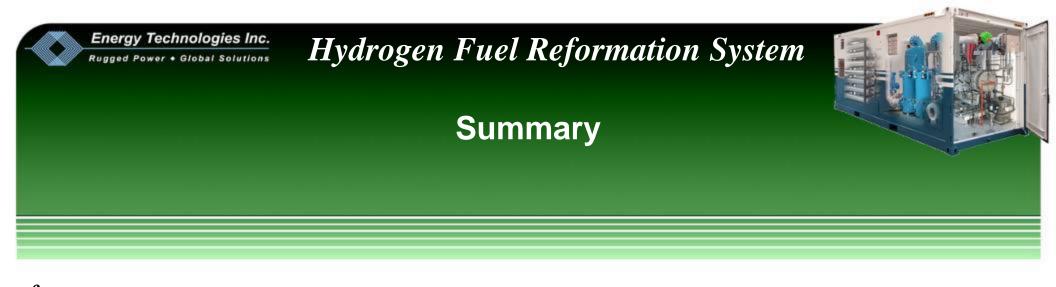
- Net present value with Internal Rate of Return (IRR): 10%
- 20 years depreciation on facility equipment
- 10 years depreciation on reactor
- Cost of feedstock and electricity taken from Energy Information Administration (EIA) Annual Energy Outlook report


Hydrogen Fuel Reformation System

Substantiation of Technology and Business Case Performed by Independent Third Parties

- Basic H2 Reformation Science R & D performed by Energy Conversion Devices (ECD) / Ovonics, Rochester Hills, MI
- Department of Energy (DOE) SBIR Phase 1 and 2 managed by Directed Technologies and Strategic Analysis, Inc., Arlington, VA
- Business Model Marketing Analysis performed by SRA International, Inc., Fairfax, VA
- Emerging Hydrogen Market Forecast performed by Navigant Research, Washington, DC

• Business Case Studies and Financial Analysis performed by University of Michigan Global MBA MAP Team, Ann Arbor, MI


f• The Base-Facilitated Reforming (BFR) process has been demonstrated on wide variety of fuels.

f The reforming temperatures using the BFR process are significantly lower than the electrolysis or steam reformation process of the fuels.

f• The BFR process exhibits good H₂ generation rates at the low temperatures of operation.

f The BFR process is a simple one step process. Pure H₂ and no CO and CO₂ produced. WGS reaction and PSA are therefore avoided and the process is environmentally clean.

f• The BFR process is economically feasible and competes well with other technologies.

- High conversion of raw biomass feedstock's and high yield (close to 100%) of H₂ was obtained using BFR.
- The process operates at low temperatures without producing CO and CO2
 gases and it is economically feasible.
- *f* Commercialization of 100 kg, 500 kg, 1500 kg and 2000 kg of H₂ per day is underway.
- For example, an 1800 kg per day module can support a 1 Mw fuel cell at full load continuously.
- Besides being scalable, the module can work in parallel.

Contact Information

Energy Technologies, Inc. 233 Park Ave East Mansfield, OH 44902 419.522.4444 Voice 419.522.4466 Fax

Tim Lowe, PhD, VP of Sales

tdlowe@ruggedsystems.com

Dan Madden, PE, CEO

pdmadden@ruggedsystems.com