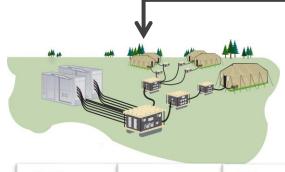


# **USMC Battery Efforts Justin Govar**

Joint Service Power Expo VERSION 1 / August 11, 2015

- Overview of EPS
- USMC battery drivers
- USMC battery needs and programs
- EPS R&D efforts
- Upcoming opportunities
- Conclusion




HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

## **EPS Program Office**



Mobile Power, Water and Fuel

## Advanced Power Team









# MARINE CORPS SYSTEMS COMMAND HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

## **Advanced Power Team**

#### **Radio Power Adaptors**



### **Power Supplies**



#### Renewable Energy



### **Hybrid Systems**



#### **Battery Management / Sustainment Systems**



- More disperse operations
- Resupply requirements
- Growth in electrically powered gear
- Digital data
- IED protection
- Mobility concerns
- Cost

**1990** 65.40 lbs – 67.40 lbs

**2009** 92.69 lbs – 98.28 lbs



Increase of ~ 27 to 30 lbs/Marine

-Representative of Marine assault load
 -Does not include billet specific items
 -Does not include spare batteries





## **Individual Marine Power Requirements 1990**

Angle Head Flashlight
D Cell Battery
Qty: 2





HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

**DAGR** 

**AA Battery** 

AN / PSC-13 D-DACT

Unique or AA Battery

## **Individual Marine Power Requirements 2010**



AN / PRC-117F Rugged Laptop BA-5590 / BA-5390 / BB-2590 Batteries Unique Battery

DISTRIBUTION A. Approved for public release: distribution unlimited.



# Power for the Dismounted Marine

## Hybrid and Grid Systems



Large format batteries
Hybrids - High energy density
Girds - High power density
High cycle life
Low cost

## <u>Vehicles</u>



High Power – SIL applications High Energy – Silent watch

## Weapon Systems



Wide Range of Needs High Energy

## Man Portable Applications



High energy Physically rugged Quickly exchangeable Right size



HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

#### **Man Portable Power**

## Small Cell Development



Higher energy cells Rechargeable mandate Rechargeable 123A

### Alternate Form Factor Batteries



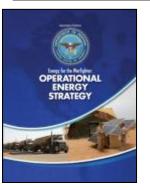
Family of battery sizes Low profile batteries

### Portable Power Generation





Renewable energy Portable generators


## Wireless Charging





Power > 300W Distance > 2 ft Eff > 80% Number of systems > 5 High degrees of freedom

## **Standards Development**

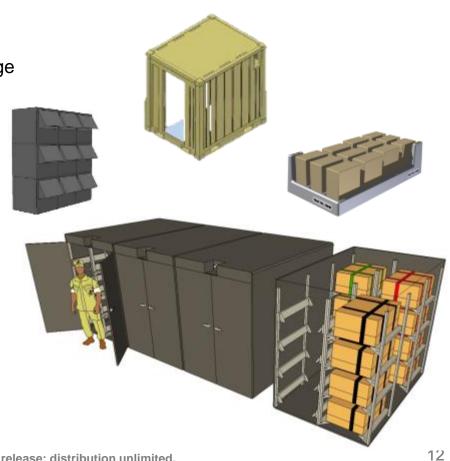


Family of batteries Interface standards Connector standards Mission power planning

- Replacement of the SPC
  - More efficient
  - High power/selectable power
  - Charge new battery times
  - Faster battery charge time
  - Volume and weight reduction
  - High environmental survivability
- Planned FY16 RFP release for production items



## **Lithium Battery Maintenance**


Recent Marine Corps study found that vessels caring Marine Corps assets are inadequate to meet future large format lithium battery storage needs.

#### **Problem**

- Growth in lithium batteries
- Lack of proper ground and ship based storage
- Million in damaged batteries
- Lack of maintenance capabilities

#### **Critical Parameters**

- Safety
- Electrical Interface (Interoperability)
- **Mobility**
- Modularity
- Autonomous maintenance
- **Environmental Control**
- User Feedback





HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

# Mobile Electric Hybrid Power Systems (MEHPS)



#### Generator

- Militarized generator
  - Flexible Fuel
- Universal Generator Control Technology (Remote start/stop)



#### **Battery**

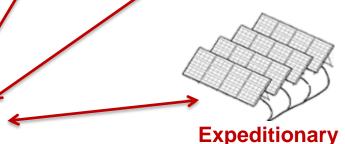
- High Energy Density
- Modular & Expandable
- Broad Operating Temperature Range



#### **Power Inverter**

- High Efficiency Inverter
  - Fully Ruggedized
  - 3-Phase Power
- 2-Way DC/DC Converter




#### **Trailer**

- Military HMMWV Trailer
  - Trailer Mounting & Integration Hardware



#### **Cables**

- **Power and Data Cables**
- Environmentally Rugged
- Quick Connect Tech.



## Intelligent Controller • Rug

- Software Controls
- Human Interface
- Compact Electronics

## Solar Array

- Lightweight, Compact Composite Panels
  - Rugged and rapidly deployable

Development effort focuses on smaller, lighter, more efficient, easily maintainable systems.



## **Compact High Density Tactical Energy Storage**



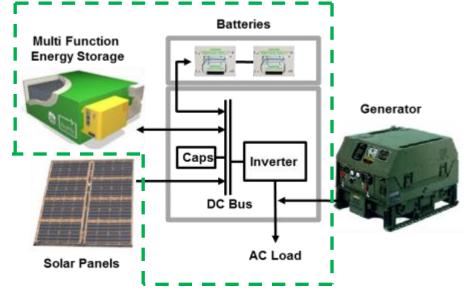
#### **Objective**

Advance module-level energy storage technology to expand the envelope of safe storage, transport and operating conditions.










#### **Approach**

Scalable/modular energy storage
High cycle life battery chemistries
Reconfigurable, cell level control technology
Communication and controls integration

### What it means to the warfighter

Reduce need for fuel resupply
Support future high pulse loads
Common use, transportable, high density
Enable Safe operation, storage, and transport
Advance open system architecture concepts
Enable intermittent silent watch





## Modular, Scalable, Safe and Compact High Energy Density Sodium Metal Halide Battery

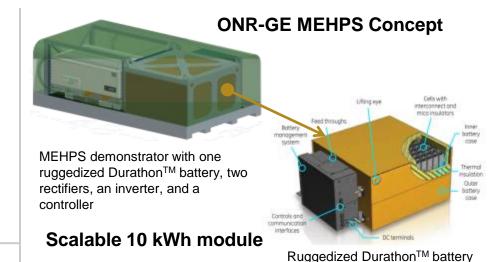


### **Program Objectives**

Develop and demonstrate a modular, scalable, safe, and compact high density sodium metal halide battery energy storage (ES) with optimized complementary DC to DC converter integrated with BMS for MEHPS applications.

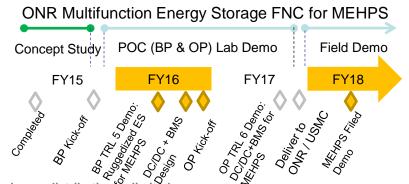
#### **Naval Relevance**

- + 10-15 year operational life, >4500 cycles
- Safer chemistry
- Extremely long shelf life (~20 yrs)
- + Robust operation, independent of ambient temperature.


#### **Technical Approach**

#### Base Phase (BP) / Phase I:

- Ruggedize Durathon<sup>TM</sup> battery for MEHPS application
- Demonstrate hybrid power system with ES and emulated solar PV, diesel gensets, and loads.
- Develop integrated DC/DC converter with BMS concept.


#### Option Phase (OP) / Phase II:

- Design and prototype integrated DC/DC converter with BMS
- Integrate the prototype component into base phase demonstrator
- Demonstrate fully integrated system with combined DC/DC & BMS.



#### Goals / Accomplishments by FY

- ✓ Pre-contract cost agreement: May 12, 2015
- ✓ Project kick-off: June 5, 2015 (Tcon & WebEx)
- Post-award Scope of Work review: August 7, 2015.

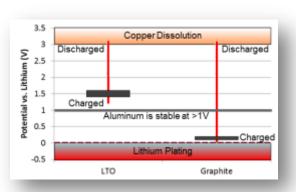




## **Compact High-Density Tactical Energy Storage**



#### Objectives:


- 1. Reduce impedance growth and improve high temperature performance of Lithium Titanate (LTO) cells
- Incorporate cells into a modular system design (including BMS), capable of being extended up to 12kWh of total energy storage
- 3. 65 Wh/kg energy density at cell level
- 4. <\$450/kWh goal in high volume production
- 5. Indefinite 0V storage (and shipment)

#### **Naval Relevance:**

- Long cycle life (20k 80k 80% depth-of-discharge, 2C/2C cycles)
- · Safe chemistry

#### **Technical Approach:**

- Investigate alternative electrolytes, including alternative salts and advanced additives along with alternative formation procedures with the goal of forming a stable, low impedance surface coating on the LTO.
- Work closely with material suppliers to investigate and test alternative fabrication techniques and surface treatments.
- Screen LTO from suppliers to identify and implement the best materials for high temperature life.
- Modify the cell design, especially the positive to negative ratio (LTO allows negative or positive limited designs vs. graphite where negative electrode excess is always required to avoid lithium plating), to optimize cycle and calendar life.
- Test and improve (as necessary) the safety profile of the cells under all relevant abuse conditions (nail penetration, short-circuit, over-charge, crush, over-discharge, etc.) to ensure excellent abuse tolerance.



LTO operates in a potential range far from lithium plating providing cycle life and safety advantage.

#### **Goals / Accomplishments by FY:**

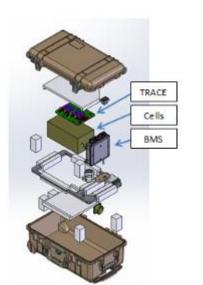
- Pre-contract Cost Agreement: 19 March 2015
- Contract Award: 29 June 2015
- 1st 6 months: Focus on reducing gas generation rate at 55°C
- 2nd 6 months: Focus on reducing impedance growth and improve the cycling stability
- 3rd 6 months: Optimize cell and battery module for performance and cost
- 18-month option period to achieve TRL 6

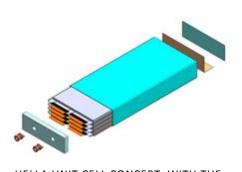


# High Efficiency Lithium-ion Lightweight Assembly (HELLA) Battery



#### **Objectives:**


- Highly energy dense battery cell
- Potential to meet objective cycle life goals of 20,000 cycles.
- 1-Marine portability, 1300 Wh module, 32 lbs.


#### **Naval Relevance:**

- Advanced energy storage approach relevant to the USMC
- High energy density potential
- TRACE system will allow interoperability with multiple systems and chemistries

#### **Technical Approach:**

- Advanced Nickel Cobalt Manganese oxide (NCM) chemistry
- EPT-Yardney to develop battery cell and perform critical safety and performance testing and develop the accompanying Battery management System (BMS)
- Iris to develop Translator/Regulator Adaptive Control Electronics (TRACE) module for plug & play communication with the host hybrid system, facilitate safe and efficient charging and discharging, protect the HELLA from external faults, and protect users and equipment from battery events.





HELLA UNIT CELL CONCEPT, WITH THE CONSTITUENT CELLS PACKAGED IN THE INTER-CELL SEPARATOR SYSTEM

#### **Goals / Accomplishments by FY:**

| Precontract Cost Agreement:                                 | 10 April 2015  |  |
|-------------------------------------------------------------|----------------|--|
| <ul> <li>Contract award:</li> </ul>                         | 29 May 2015    |  |
| <ul> <li>Requirements Definition:</li> </ul>                | Apr-Jun 2015   |  |
| <ul> <li>SRR held at Yardney</li> </ul>                     | 10 July 2015   |  |
| <ul> <li>Battery Cell &amp; BMS Development:</li> </ul>     | Jun – Apr 2016 |  |
| <ul> <li>TRACE Development:</li> </ul>                      | Jun – Jan 2016 |  |
| <ul> <li>Battery Enclosure:</li> </ul>                      | Jun – Jan 2016 |  |
| <ul><li>Integration &amp; Test (TRL 5):</li></ul>           | Jan – Jun 2016 |  |
| <ul> <li>Delivery of TRL 5 HELLA Battery</li> </ul>         | 30 Oct 2016    |  |
| <ul> <li>18-month option period to achieve TRL 6</li> </ul> |                |  |



## ONR FNC Programs

- Renewable Sustainable Expeditionary Power (FY12-FY15)
- Multifunction Energy Storage FNC (FY15-FY17)
- Rapid Innovation Fund Programs
  - Integrated Hybrid Power System
    - Iris Technologies
  - Renewable and Efficient Electronic Solution
    - Protonex
  - Generator Controls w/ Intelligent Power Distribution
    - IPERC
  - Remote Water Purification System
    - Marine Dynamic Design
  - Gray Water Conditioning System
    - Marine Dynamic Design
  - Scalable Hybrid Intelligent Power System
    - Iris Technology











# MARINE CORPS SYSTEMS COMMAND HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

# Small Business Innovative Research

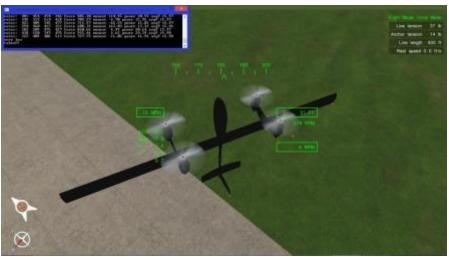
## 4 Active Topics -

- Battery Maintenance
  - One Phase 2 Contract (FY15 end)
- Fuel Efficient FOB
  - Three Phase 2 Contracts (FY15 end)
- Renewable Energy System Trailer
  - Three Phase 2 Contracts (FY15 end)
- Lighten the Load
  - One Phase 2 Contract (FY15 end)

## 3 New Topics

- Harvestable Energy in Covered Locations
- Platoon and Squad Water Purification Technology
- Light Weight and Compact Renewable Energy Systems in the 1kW power range










HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

### Windlift SBIR



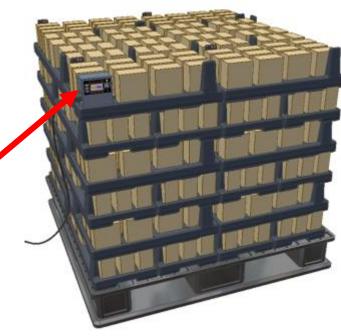
### Tethered Autonomous UAV

- 24' wing-span UAV (120 lbs.)
- 8 control surfaces
- Emergency parachute
- 500' tether (25 lbs)
- Vertical take-off and landing
- 7 'LTT Trailer-mounted Ground Station
- 9kW of Electrical Power
- Wide area persistence surveillance
- Communication relay

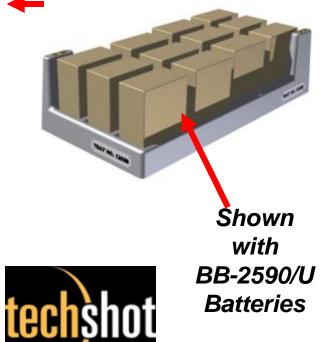
## Vehicle Design








HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

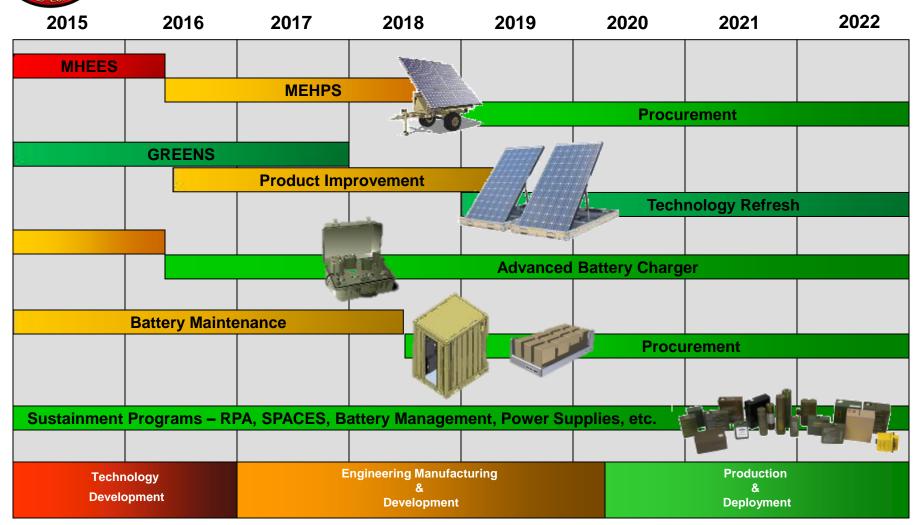

## **Battery Maintainers**

## **Controller**





## **Battery Trays**




- Autonomous battery monitoring and charging
- User feedback on battery SOH
- Adaptable for multiple battery types
- Stackable for storage



# MARINE CORPS SYSTEMS COMMAND HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

# Advanced Power Sources Key Initiatives



SPACES – Solar Power Adaptor for Communications Equipment System (30 Watt continuous) GREENS – Ground Renewable Expeditionary Energy Network System (300 Watt continuous)

MHEES – Medium Hybrid Expeditionary Energy System MEHPS – Mobile Electric hybrid Power System

## **Business Opportunities**

| Title                                       | Funding | RFP Release |
|---------------------------------------------|---------|-------------|
| Mobile Electric Hybrid Power System (MEHPS) | RDT&E   | Fall 2015   |
| Energy Storage for Micro Grids              | RDT&E   | Future      |
| Advanced Battery Charger                    | PMC     | Fall 2015   |
| Platoon Water Purification System           | -       | Future      |
| Individual Water Purification System        | PMC     | Summer 2017 |
| Renewable Energy in Covered Locations SBIR  | RDT&E   | Now         |
| Light Weight Hybrid Systems SBIR            | RDT&E   | Now         |
| Small Light Weight Water Purification SBIR  | RDT&E   | Now         |
| Battery Maintenance Capability              | PMC     | Summer 2018 |
| MEHPS Production                            | PMC     | Fall 2017   |
| Tech Refresh of Systems                     | -       | various     |

# Email questions to: PM\_EPS@usmc.mil

## Find more programmatic information:

http://www.marcorsyscom.marines.mil/ProgramOffices/EPSHome.aspx www.onr.navy.mil

http://www.hqmc.marines.mil/e2o/E2OHome.aspx

## **Current / Future Solicitations:**

www.fedbizopps.gov

Any questions about on-going solicitations:

Must contact the listed Contracting Officer in the solicitation

