# EaglePicher™ Technologies, LLC An OM Group Company

6T Format Lithium Ion Batteries in 12V and 24V Configurations

Felix Nunez, John Pugsley, Rhonda Shields, Rick Heilbrun, and <u>Arthur Dobley</u>

> 2015 Joint Service Power Expo Cincinnati, OH August 26, 2015



- Project Overview
- Mechanical Design
- Electrical Design
- Performance Data
- Conclusions









# **6T Battery Background**

- 6T is a NATO Standardized Form Factor
- Standardized From Factors Used in 95% of military vehicles
- Baseline is Lead Acid battery



\* Baseline from TARDEC talk: June 19, 2012 by Yi Ding, PhD. Approved for public release.

EaglePicher™ Technologies, LLC

# **Project Overview**

- EaglePicher awarded contract by CALSTART to develop and deliver 12V and 24V Lithium-ion batteries in the 6T form factor
- 3 Lithium-ion replace 4 Lead-acid in Class 8 delivery vehicles
- 6 month project
  - Commercial parts
  - Limited lab testing
  - Emphasized field data
- Deliverables
  - (3) 12V batteries installed in a vehicle in California
  - (3) 12V batteries installed in a vehicle in Colorado
  - (6) 24V batteries delivered to TARDEC for characterization and Life Testing

Eagle Picher™

Technologies, LLC

#### **Application of 6T Batteries**

- 6T batteries replaced common lead-acid batteries
- Kenworth T800B Class 8 Cab Truck Tractor used
- Similar truck show below



Photo from Kenworth T800 brochure, Kenworth Truck Co. U.S.A.

EaglePicher™ Technologies, LLC

# **California Installation**

- California Install (warm climate)
  - Vehicle ran delivery route in the southwest United States (Phoenix, Tucson, Las Vegas and the greater Los Angeles area)
  - Warm temperatures and anti-idling laws provided a challenging environment
  - Completed 4 months of field service
  - Batteries returned to EaglePicher for evaluation

**Eagle**Picher<sup>™</sup>

Technologies, LLC



EaglePicher™ Technologies, LLC An OM Group Company

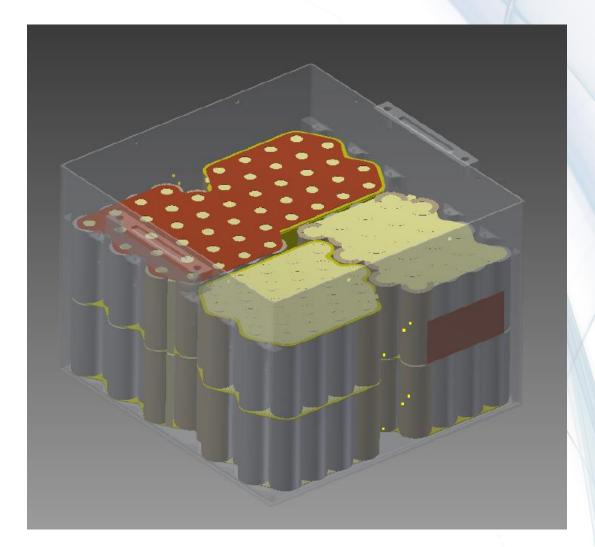
- Colorado Install (cold climate)
  - Vehicle ran delivery route in the Colorado
    - New Mexico area
  - 4 month mission
  - Vehicle problem ended mission prematurely
  - Batteries were returned to EaglePicher

- Both installations included a data logger in the vehicle
  - Data logger: DRU900 from ISAAC Instruments connected to the truck J1939 outlet (CAN Bus), and IDN cable connected to battery BMS
  - Data sampling rate: 10 Hz for BMS parameters at startup, 1 Hz for all parameters
  - GPS receiver: Garmin G18 1 Hz

**Eagle**Picher<sup>™</sup>

Technologies, LLC

### **Mechanical Design**


- Cell selection Safety
  - Lithium Iron Phosphate
  - 26650 configuration (cylindrical hard case)
  - 12V: 49P4S
  - 24V: 24P8S
- Battery Design
  - Terminals 3/8 16 threaded stud (adaptable to multiple platforms)
  - Aluminum container
  - Vent
  - J2 Communications connector
  - Handling straps
  - Battery Physical Configuration
    - Nominal weight: 56 lbs/25.5 kg
    - Nominal Capacity: 120 AH/60 AH
    - Nominal Voltage: 13.2 V/26.4 V
    - Height: 10.00 inches
    - Width: 10.00 inches
    - Length: 10.51 inches

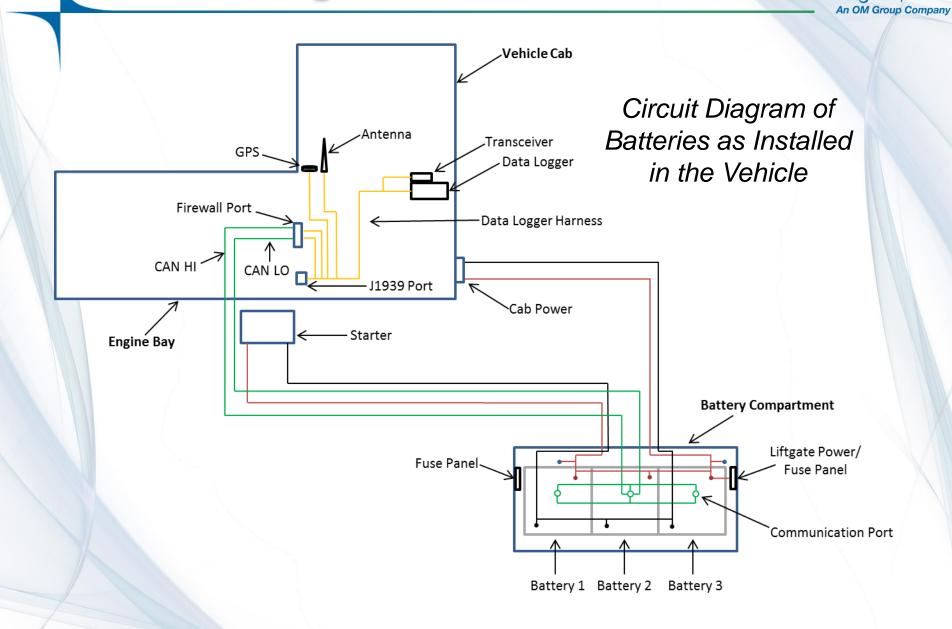


EaglePicher™ Technologies, LLC

# **EP's 6T Construction**

- Durable metal case
- Cylindrical cells
- Efficient packing
  Electronics
  Safety Systems

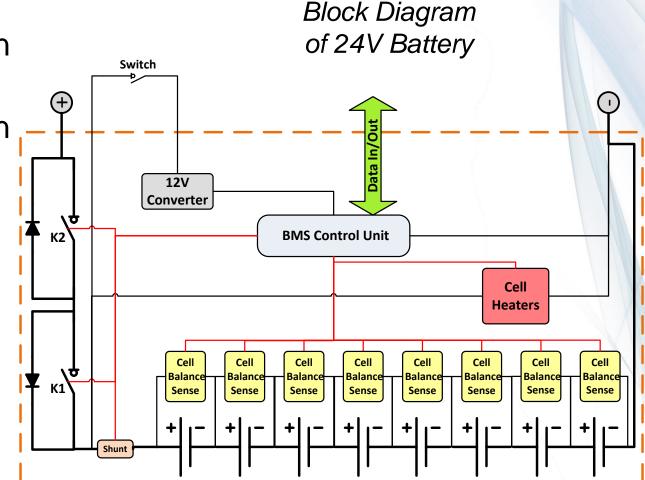



EaglePicher™ Technologies, LLC

# **Three 6Ts Installed**






#### Circuit Diagram of 6Ts in Truck Eagle Picher Technologies, LLC



# **Electrical Design**

The BMS consist of the following primary components:

- BMS Control Unit
- K1 (normally open contactor)
- K2 (normally open contactor)
- Cell Balance and Sense Boards
- Cell Module Heaters
- Current Shunt
- 12V Converter (24V model only)



**Eagle**Picher<sup>™</sup>

Technologies, LLC

# **Electrical Design: BMS**

#### **Battery Management System Control Unit**

Primary Control and Oversight of Cells and Battery Operation

- The Control Unit is the focal point of the protection system
- Receive information from external sources, such as a key switch
- Send J1939 CAN data to an external data collection system
- Operates the individual Cell Balance Boards, Cell Heaters, Charge/Discharge Contactors
- It will also monitor for the following fault conditions
  - Over Temperature
  - Under Temperature
  - Over Current
  - Over Voltage
  - Under Voltage
  - Cell Communications
- Unit can be powered off with external switch for long term storage

#### **K1**

#### Prevents Discharge

Operation controlled by BMS Control Unit

**Eagle**Picher<sup>™</sup>

Technologies, LLC

# **Electrical Design: BMS**

#### K2

**Prevents Charge** 

- Operation controlled by BMS Control Unit
- Closes when BMS Control Unit receives 12V or 24V signal from ignition switch

#### **Cell Balance and Sense Boards**

Support Cell Balance and Sense Functions

- Shunt of variable amounts of current from the high voltage cells during charge
- Achieve uniformly charged cell modules
- Cell Voltage sense
- Cell Temperature sense
- Operation controlled by BMS Control Unit

#### **Cell Heaters**

Maintain Proper Cell Temperatures

- Heat cells to acceptable temperature for charging
- Self heat cells to enhance cold weather starting capability
- Operation controlled by BMS Control Unit

#### Performance Data (California Batteries) Eagle Picher

- 12V battery pack verification testing prior to shipment
  - Room temperature capacity cycle
  - 1000A discharge for 10 seconds
  - Verified Cold temperature heater operation
- Additional test to verify operation of 3 batteries in parallel
  - Charge (CC/CV)
  - 1000A discharge for 30 seconds
  - Vehicle operation
    - Sep 2013 Dec 2013
  - 12V battery pack verification testing after field service
    - OCV after removal from the vehicle
    - Room temperature capacity cycle
    - 1000A discharge for 30 seconds, 3 batteries in parallel
  - Visual inspection for damage

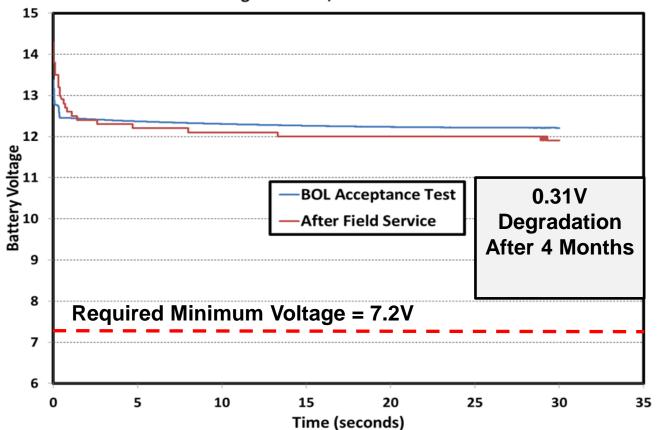
#### **Performance Data**

EaglePicher™ Technologies, LLC An OM Group Company

Vehicle In-

Service

**Statistics** 


| Days in   | Miles  | Starts | Idle | Min Air  | Max Air |                 |
|-----------|--------|--------|------|----------|---------|-----------------|
| Operation |        |        | Time | Temp     | Temp    |                 |
| 52        | 9030.3 | 1536   | 18%  | -16.34°C | 37.34°C | $\left \right $ |

| Battery | Min Cell<br>Voltage | Max Cell<br>Voltage | Min Cell<br>Temp | Max Cell<br>Temp |                        |
|---------|---------------------|---------------------|------------------|------------------|------------------------|
| 001     | 3.32V               | 3.65V               | +5°C             | +51°C            | Dette my la            |
| 002     | 3.30V               | 3.67V               | +7°C             | +53°C            | Battery In-<br>Service |
| 003     | 3.32V               | 3.67V               | +7°C             | +51°C            | Statistics             |

| Battery | Open<br>Circuit<br>Voltage | Min Cell<br>Voltage | Max Cell<br>Voltage |                      |
|---------|----------------------------|---------------------|---------------------|----------------------|
| 001     | 13.24V                     | 3.31V               | 3.31V               | Battery Health after |
| 002     | 13.22V                     | 3.30V               | 3.31V               | Removal from         |
| 003     | 13.23V                     | 3.30V               | 3.31V               | Vehicle              |

#### **Life Predictions**

- Capacity degradation and voltage degradation characterized at room temp
  - Capacity loss = 1.77AH per month
  - EOD Voltage loss = 0.077V per month (@ starter load = 1000A)



Discharge at 1000A, 3 Batteries in Parallel

**Eagle**Picher<sup>™</sup>

Technologies, LLC

# Life Predictions: continued

- Life Predictions, Cont.
  - It is known that the battery will need to be heated to TBD°C in order to support the starter load requirement
  - For this analysis we have assumed TBD = 20°C since our degradation rates have been calculated at this temperature
  - What we know
    - Power usage of heaters (AH/°C)
    - Capacity used to make a start attempt
    - BOL Capacity and Voltage
    - Capacity and Voltage degradation rates
    - Cell voltage vs SOC
  - Calculations
    - Assume an ambient temperature < 20°C</li>
    - Calculate heater load to reach ambient (AH)
    - Calculate resulting SOC of battery and corresponding cell voltage
    - Predict life based on capacity = SOC after start / capacity degradation rate
    - Adjust EOD voltage based on SOC after heating
    - Predict life based on voltage = adjusted EODV / voltage degradation rate

**Eagle**Picher<sup>™</sup>

Technologies, LLC

OM Group Co

#### Life Predictions: continued

EaglePicher™ Technologies, LLC An OM Group Company





# 6T Battery Comparison

#### Baseline Lead Acid vs EPT's Li-Ion

|                      | Baseline 6T<br>Lead Acid * | EPT's 6T<br>Li-Ion     |
|----------------------|----------------------------|------------------------|
| Voltage              | 12V                        | 12 or 24 V             |
| Capacity             | 120 Ahr (C/20)             | 120 Ahr (Nominal, 12V) |
| Energy Density       | 36 Wh/kg                   | 57 Wh/kg               |
| Weight               | 40 kg                      | 25.5 kg                |
| Class 8 Truck System | 4 Batteries                | 3 batteries            |

\* Baseline from TARDEC talk: June 19, 2012 by Yi Ding, PhD. Approved for public release.

## Conclusions

- Designs successfully integrated COTS parts into the 6T form factor
- Vehicle installation provided valuable exposure to actual field conditions
- Performance data after field service indicates BMS adequately managed cell health and safety
- Significant weight savings
  - EP 6T = 57Whr/kg, Typical Lead-acid = 40 Whr/kg (30% Savings)
  - 3 Lithium-ion replace 4 Lead acid (25% savings)
- Projected life of Lithium-ion solution is 4-5 years
- EaglePicher's 6T Lithium-ion battery provides a safe solution with significant technical advantages

**Eagle**Picher<sup>™</sup>

Technologies, LLC

EaglePicher™ Technologies, LLC

- EaglePicher: Coworkers
- CALSTART: Ted Bloch-Rubin, Jasna Tomic, Jean-Baptiste Gallo
- TARDEC: Laurence Toomey

# **Contact Information**

- Arthur Dobley:
  - -arthur.dobley@eaglepicher.com
  - -(401) 471-6580 ext. 255
  - -www.eaglepicher.com/lithium-ion-6t
  - -www.eaglepicher.com



EaglePicher™ Technologies, LLC