

Advanced NiMH Power Battery for High Rate Applications

Joint Service Power Expo August 26, 2015 Mark Kohler, PMP Program Manager mark.kohler@g4sinc.com

Who is G4 Synergetics?

G4 Manufactures Ultra High Power, Rechargeable Advanced NiMH Batteries

Discharge

Company Overview

- Long history of nickel battery development
 - General Electric
 - Energizer
 - Gates
- Team consists of battery veterans with over 150 years experience
- Based in United States (Alachua, FL)

Land: 103 acres Facility: ~40,000 sq. ft.

Why did G4 select Ni-MH?

Proven battery technology for high power applications

• The HV battery, battery control module are covered for <u>8 years/100,000 miles.</u>

Source (April 2014): www.toyota.com

Commercially Proven Chemistry for Safe and Long Cycle Life Performance

What is unique about the G4 design?

Stacked Configuration w/BMS

45Ah, 12V Module

What does this battery architecture actually achieve?

Chemistry	Lead Acid	Standard Lithium Ion	EDLC (Super- capacitor)	LTO Lithium Ion	NiMH
Positive Electrode	PbO ₂ /PbSO ₄	LCO, LMO, LFP, NMC	Activated Carbon	LCO, LMO, LFP, NMC	NiOOH
Negative Electrode	Pb/PbSO ₄	Graphite	Activated Carbon	LTO	Metal hydride
Cost at system level	 High energy Low cost Slow charge 		<pre>>\$8,00 kWH (comp chg/dc <90s)</pre> • High power		
Strengths:	Low cost solution	High volume production and decreasing system cost	Can be charged and discharged very quickly	Can be charged quickly	High power Long life
Weaknesses:	Cannot be charged quickly. Low gravimetric energy density	If charged faster than C/2.5 lithium plating can occur and safety/cycle life is compromised	 Low ener density a cost Moderate energy Reasonable cost 		

G4 Unique Safety Features

G4 architecture allowed continuous, safe venting

In this model, G4 delivers ~7 times more energy than competitive Lithium-Ion polymer batteries (LPB) at nearly the same discharge power

D1301: High Rate, 6-Cell, 25Ah, Battery @ 400A, 30 Cycles Test (fans on)

2 min pulses at 400 Amps, 5 minute dwell period between pulses

D1251:12-cell G4 Battery:400A,2 Minute Test (Fans on) for 200 Cycles

~2 minutes dwell period v. 5 minutes in 25Ah design

Battery cooled to 45°C between discharge/charge

45Ah, 12V Module

G4 Synergetics Energy Density Roadmap

So What? You made us snooze with all this data!

The Real Question is: "What can the G4 battery do for the warfighter?

Military Investigations:

Pulsed power weapons and applications - in 1. evaluation stage at UTA Rapid recharge capability at high rates could 2. re-deploy assets in rapid fashion For FOB/facilities, smoothing/firming of 3. intermittent energy sources (PV, wind), power/voltage stability Potential to circumvent stringent and costly 4 testing criteria – DOT "friendly" Strategic applications that G4 is not privy to 5.

The University of Texas at Arlington's Pulsed Power and Energy Laboratory - **David Alan Wetz Jr., Ph.D**

Contact Information:

Mark Kohler, PMP Program Manager

mark.kohler@g4sinc.com

12705 US Highway 441 | Alachua, FL 32615 386.462.9532 | sales@g4sinc.com | www.g4synergetics.com