

Development of a Soldier Wearable Power System (WPS)

Aug 26th 2015

APPROVED FOR PUBLIC RELEASE

2015 Joint Service Power Exposition

APPROVED FOR PUBLIC RELEASE

Dr. Tony Thampan, SME, Tactical Power

CERDEC/CPI/Power/Power Sources

Purpose

- Development of a Wearable Power System that provides power to all soldier borne equipment via Integrated Soldier Power & Data System.
- 1st Gen (2012)
- Product Payoff
- Physical weight burden reduction (>4X) vs. batteries for dismounted soldier extended missions (72 h)
- fightable footprint Provides power in a centralized
 - power configuration
- Alternative to Conformal Wearable Battery

ntrocuction

Provides wearable power in a

APPROVED FOR PUBLIC RELEASE

ISPDS

Battery

Wearable **Fuel Cell**

Different materials available for energy storage

Selected Alane (AIH₃) based on high energy density, high H₂ product purity and H₂ generation process

 $\Delta H = 6.6 \text{ kJ/mol H}_2$

With commercial partner have developed AIH₃ systems that are promising

26 AUG 15

APPROVED FOR PUBLIC RELEASE RDERDI[®] Why Alane?

APPROVED FOR PUBLIC RELEASE

echnology	EDAB	NH3 Borane	Na Silicide	Na Borohydride
uel Energy sity (Wh/kg)	3697	6722	3025	7058
Cartridge (Wh/kg)	490	800	133	587
Comments	Pentaborane byproduct	Ammonia byproduct	Low energy density	Difficult reaction control

Technology	RMFC	DMFC	AIH3
el Energy Density (Wh/kg)	2907	5538	3361
artridge Wh/kg	485	780	800
System Power Density (W/kg)	22	13	29
stem Vol. Power Density (W/I)	23	11	32
TRL	TRL 8	TRL 8	TRL 6

JS ARMY – RDECON

Fresh Alane (AIH₃)

U.S. ARMY RDECONT®

SEM imaging showing Alane (α -AlH₃ phase) material Spent material retains cubic shape but is porous due to H₂ release

26 AUG 15

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

What is Alane ?

Spent Alane (AI)

H₂ production (Energy) from AIH₃ decomposition

With temperature (heating) can control H, production following load demand.

26 AUG 15

APPROVED FOR PUBLIC RELEASE

Isothermal desorption data at different temperatures as a function of time. Solid lines are model fits. (T. Thampan et al. 2015).

APPROVED FOR PUBLIC RELEASE

			- – 90°C Expt. Dat
			115°C Expt. Da
			 – 135°C Expt. Da
			•••• 175°C Expt. Da
			— Model Fit Data
40	0 600	800	1000
		Duration (m	in)

Energy from Alane *CER

1400

1200

AIH₃ cartridge with PEM fuel cell system was instrumented with electrical, temperature sensors

U.S. ARMY RDECOV®

Despite high internal temperature, external temperatures remain low

Although H₂ generation from Alane requires of heating ~ 30% net energy demonstrated

26 AUG 15

APPROVED FOR PUBLIC RELEASE

Prototype battery charger

APPROVED FOR PUBLIC RELEASE System Prototype <u>*GERDEG</u>

Surface temp. are touch safe

With industrial partner developed 1st Gen wearable system

Parameter	Dem
Power (W)	20
Peak Power and Duration	35 W
Energy Density for 24 hr mission	385
Dry Weight (kg)	0.698
Volume (mL)	622
Form Factor	Thicł cm
Environmental Operating Temperature Range	Up to
Orientation	Oper orien

26 AUG 15

APPROVED FOR PUBLIC RELEASE

onstrated

- V for 10 min
- Wh/kg
- 8
- kness of 3.8
- o 45°C

ration: any ntation

AIH₃ cartridge compartment

APPROVED FOR PUBLIC RELEASE

Wearable System

Cartridge energy remaining

Volume: 62 cm³ Weight: 68 g ED: ~800Wh/kg

(T. Thampan et al. 2014).

7.0 cm

Power output

Developed next gen. system based on feedback

AIH₃ cartridge with one quarter turn to open / close

Flexible form factor

THE OWNERS OF TAXABLE PARTY.

THE OWNER ADDRESS OF TAXABLE PARTY. STREET, STREET

THE OWNER WHEN THE PARTY OF TAXABLE PARTY.

26 AUG 15

APPROVED FOR PUBLIC RELEASE

Battery Compartment - allows energy harvesting.

One quarter turn to open/close

APPROVED FOR PUBLIC RELEASE

Soldier Wearable

Larger Fuel Cartridge

Smaller thickness profile

Hottest temp is 43 C /109 F in pouch due to limited cooling, still safe to touch

26 AUG 15

APPROVED FOR PUBLIC RELEASE

System Operating

System Operating in pouch

Thermal Images

APPROVED FOR PUBLIC RELEASE

9

 $\mathbf{X} \square \mathbf{E}$ US ARMY – RDECOM

Tests included: Constant load In pouch + Constant load In pouch + Cycle load

Cartridge energy is ~ 600 Wh/kg (measured) vs. 800 Wh/kg (rigid systems)

Preliminary cartridge ballistic testing was done. Test results provided confidence in a safe wearable system.

APPROVED FOR PUBLIC RELEASE

Performance Data

est	Current (A)	Average Voltage (V)	Power (W)	Cartride Energy (Wh)	H2 yield
nt Load	1.3	14.4	18.72	61/64	77%
_oad / Pouch	1.3	14.5	18.85	56/66	81%
ad Pouch	0.3/2.3	14.8	4.5/34	53/66	88%

Form factor was acceptable and lightweight Could be mounted in various vest locations and orientations Operated all end items through the use of a power manager and also battery eliminator "Relatively" quiet operation Cartridge change out was preferred vs battery change out

System can be worn under other equipment

26 AUG 15

APPROVED FOR PUBLIC RELEASE

Soldier Evaluation

Flexible, thin system

APPROVED FOR PUBLIC RELEASE

Rigid system

System worn in gap formed from normal arm position

Parameter

Power (W)

Peak Power and Duration

Dry Weight Target (kg)

Volume (mL)

Form Factor

Environmental Operating Temperature Range

Orientation

APPROVED FOR PUBLIC RELEASE U.S. ARMY RDECON[®] System Meas. Vs Obj. <u>*CERDEC</u>

Objective
≥ 20
35 W for 10 min
≤ 0.5
≤ 650
Thickness < 0.7"
-20°C to +55°C
Transportation: any orientation, Operation: any orientation

APPROVED FOR PUBLIC RELEASE

WPS Achieved **Performance***

20

35 W for 10 min

0.912 kg

743

Thickness 0.81" (L-7", W-8")

Up to 45°C

Operation: any orientation

* Performance of initial, conservative prototype to prove formfactor. Followon effort underway to harden system and restore specified performance

Summary:

- time

Follow On

APPROVED FOR PUBLIC RELEASE Concusions

Passed objective targets for nominal power, peak power, start up

Passed threshold requirements for weight, volume, thickness - System is able to load follow while maintaining H₂ fuel control System can operate in a Molle pouch with an external temperature that is safe for wearable application

Cartridge energy density to be improved Improved prototype systems to be delivered 2015 Q4

APPROVED FOR PUBLIC RELEASE

