

Preliminary Analysis of Energy Harvesting Assault Pack

Julianne S. Douglas

Energy Harvesting Project Lead US Army CERDEC CP&ID Power Division

27 AUG 2015

APPROVED FOR PUBLIC RELEASE

Introduction

- Advanced Technology & Increased Power The problem:
- Increased quantities of batteries are carried by the Soldier.
 - Weight, volume, energy, cost, logistics
- One possible solution: Soldier Wearable Energy Harvesting
- Recharge one central battery on-the-move using kinetic energy harvested from the Soldier's motion.
- One promising technology is an energy harvesting assault pack (EHAP)
- Converts vertical kinetic energy from a Soldier's walking and running gait into electrical energy using a double frame load suspension system.

Why Energy Harvesting?

What it offers

- Interoperable power solutions that maximize mission duration and effectiveness
- On-the-move power generation and battery charging
- Enables Net Zero Soldier
- Reduced logistics and Warfighter physical burden by generating power and the point of need
- Reduced tactical sustainment costs

Pay offs

- Extend mission runtimes by trickle charging the centralized power source (>72 hrs)
- Generate power on the move (>10 W)
- Reduce carried replacement battery weight (>2 lb)
- Significantly reduce joint impact forces and perceived weight burden

Materials & Methods

Early experiments conducted in-house

- Walking and running on a treadmill
- Measuring voltage, current, & power with an Agilent 34970A
- Electronic load: <30% charged conformal wearable battery.

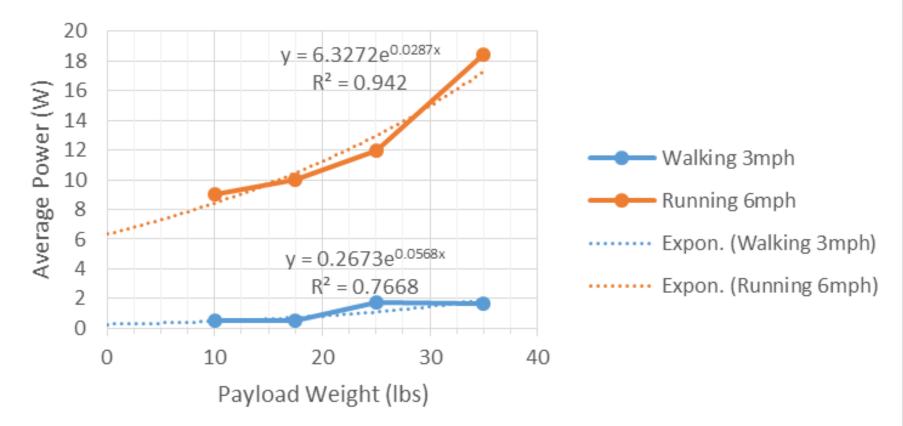
On going testing:

- Joint biomechanics and power study
 - CERDEC CP&ID Power Division and ARL HRED at the SPEAR facility
 - Compare the EHAP to standard issue Army assault pack.
 - Test conditions include
 - 17.5 and 35 lb. pack payload;
 - 3 mph and a self-selected faster pace;
 - Level ground, 5% incline and 5% decline.

Experimental Considerations

- Experimental design is critical for KEH testing
- Human motion powers these devices
 - Every human is different
 - Test conditions alone aren't enough to attain accurate, reliable, and reproducible results when humans are involved
 - Human factors
 - System integration with soldiers/test subjects
 - The human motions vary
- Consistency & Repeatability

Future Testing

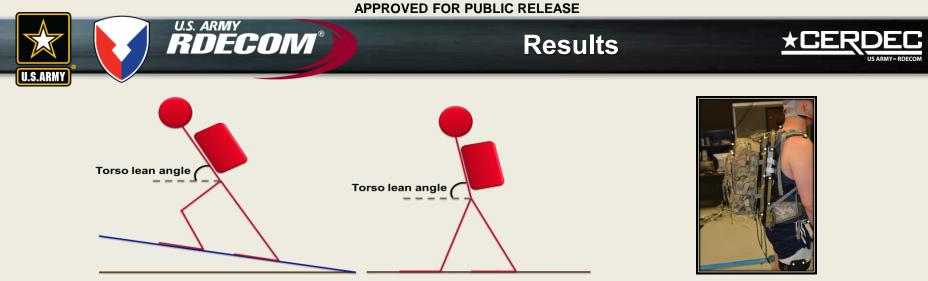

Future experimental designs

- Continue in-house treadmill testing with NI cDAQ & LabVIEW
- Warrior Torso Test Stand (WATTS)
 - Utilize results of joint power & biomechanics study to build 2 laboratory test beds capable of roughly simulating human torso motion during walking and running
 - Some WATTS Capabilities:
 - 15 135 lbs. payload
 - Variable speed control of actuation cycle: 0 to 2 Hz
 - Adjustable stroke length: 0 to 6 in.; 0.5 in. increments
 - Adjustable torso angle: 0° to 30° relative to gravity, in 5° increments
 - Operating temperature of test stand ranges from -20 to 55 °C

Average Power During Walking and Running with EGAP Unit 2 Charging a CWB

Results





Results

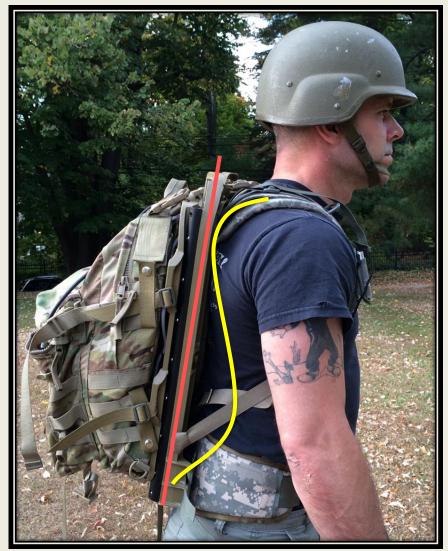
• Possible decreased torso lean angle on incline vs. level may contribute to lower power outputs (no conclusive results yet)

Preliminary biomechanics results from ARL HRED

- Treadmill speed & estimated vertical COM freq. correlation
 ≈1.8 Hz at 3 mph on level ground for both 17.5 & 35 lb. loads.
- Initial analysis indicates that COM frequency correlates strongly with speed and not with physical load.
- COM vertical motion doesn't appear to change between speeds, maybe due to tradeoffs between cadence and stride length.

Conclusion

- Analysis of test results & feedback from soldier and civilian surveys clearly indicate a need for EHAP prototype improvement before it could be ready for deployment.
- Significant improvements to system weight, ergonomics and ruggedness are planned for the future.
- Optimization of the electronics and power generation components to better tune the output to slower speeds and different payloads.


Future Work

 Primary emphasis will be placed on reducing system weight by half.

U.S. ARMY RDECOM®

- Improve the ergonomics
- Durability and ruggedness.
- In addition, an alternative design utilizing an electromagnet layout will be simulated and compared to the experimental results of the current design.

Programmatics & Schedule

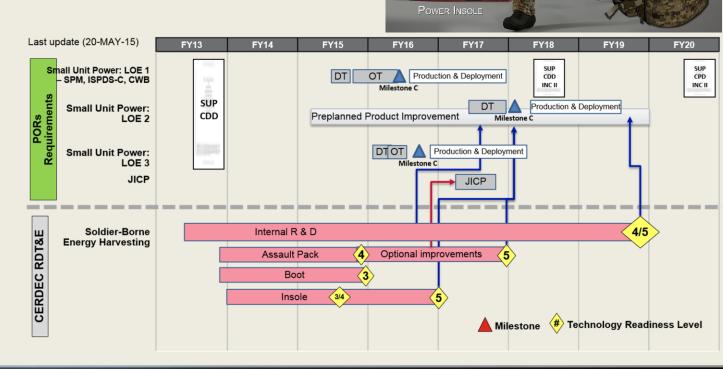
RENEWABLE

Power

POWER BACKPACK

SOLAR POWER

Current Efforts


System & component lab testing

U.S. ARMY RDECOM®

- Internal component level R&D
- Assault Pack
- Boot
- Insole

Partners

- Army: ARL HRED & SEDD, CERDEC CP&I PIT, NSRDEC
- USN NSWC
- Industry

Questions

• Questions?