

HARNESSING TECHNOLOGY for the MARREGENER

CAPT JT Elder, USN Commanding Officer NSWC Crane

Lithium Cell Calorimetry for Safety Evaluation

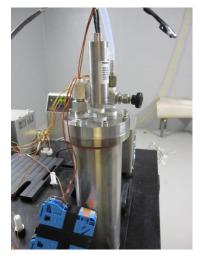
Rudy Pirani, NSCW Crane, August 2015

Dr. Adam Razavian, SES Technical Director NSWC Crane

Distribution Statement A



- Performance (Higher Energy Density):
 - Energy/Power needs driven by increasing mission and operational requirements and innovative technologies
 - Navy requirements ally unique to commercial industry
- Affordability (Development & Integration):
 - Battery system requires a rigid technical certification process
 - Safety evaluation costs and schedules are significant
- Safety (Warfighter Lives):
 - People, ships, and/or facilities at risk
 - Must consider host platform/vehicle
 - Requires high reliability and well characterized failure for mitigation development



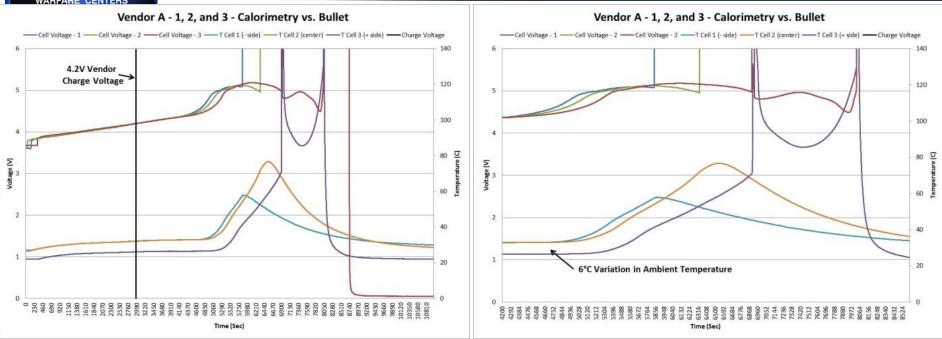
- Goal is develop a new process to obtain additional safety characterization for Lithium cells
 - Heat generation during a cell failure event
 - Data can be used to develop mitigation strategies, modeling efforts, and risk analysis
- Evaluate the feasibility of Isothermal Calorimetery for safety and abuse evaluations
 - Characterize a cell's heat generation during a failure event
 - Minimize testing requirements by capturing multiple parameters at one time
 - Compare results to standard testing processes
- Isothermal Calorimetry vs. Accelerated Rate Calorimeter (ARC)
 - ARC sample is heated through a series of heat/weight steps to identify the thermal runaway point and monitor the heat generation through the event.
 - Sample item is usually bulk material and not a full cell and is cannot be under load
 - Isothermal Calorimetry sample enclosure temperature is tightly controlled in order to monitor heat generation from the cell during operation
 - Believe that this processes allows for more realistic failure modes
 - Sample item can be full cell and item should be under load
- Efforts based on Navy Lithium Battery Safety Program
 - NAVSEA S9310-AQ-SAF-010, Technical Manual For Batteries, Navy Lithium Safety Program
 - Establishes safety guidelines for the selection, design, testing, evaluation, use, packaging, storage, transportation and disposal of lithium batteries for the Navy and Marine Corps

Testing Methodology

- Overcharge Abuse Test Comparison
 - Cells charged at nominal charge currents until an event.
 - Enclosures used to contain the event and resulting gases
 - Tests instrumented with temperature and pressure sensors
 - Calorimetry testing provides total thermal energy release
 - Identical samples tested in the standard method (Bullet Enclosure)
 - Bullet enclosure is a well defined test processes for abuse testing
 - Enclosures used to contain the event and resulting gases
 - All tests instrumented with temperature and pressure sensors
 - Same charging and monitoring processes as Calorimetry testing
- Calorimetry Test Setup Overview
 - Cell and placed in enclosure.
 - Cell enclosure placed in Aluminum fixture inside NSWC Crane patented calorimetry measurement chamber
 - System is placed in water bath that is maintained at set temperature
 - Water bath maintained at 25°C
 - Constant ambient temperature allows for accurate data collection of heat flow during charging and event.

Calorimetry Enclosure

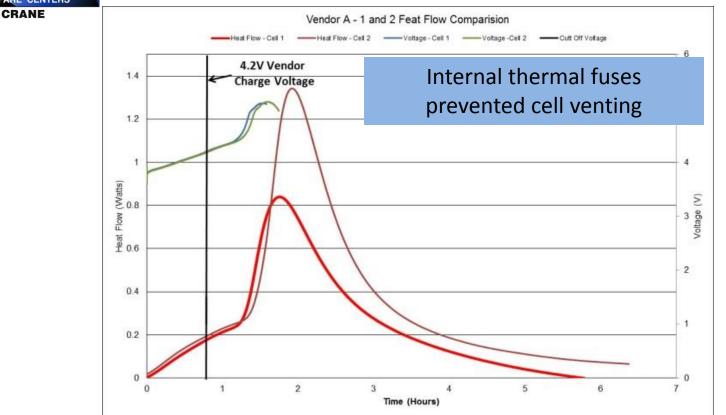
Bullet Enclosure



Testing conducted on commercially available cells

	Test	Charge Rate (Amps)	Cell Type	Cell Size	Capacity (AmpHrs)	Condition
Vendor A – 1	Calorimetry			18650	3.2	New
Vendor A – 2	Calorimetry	1.6	<u>Rechargeable:</u> Lithium Ion			
Vendor A – 3	Bullet					
Vendor B - 1	Calorimetry	_	Rechargeable:	26650	2.5	Aged
Vendor B - 2	Bullet	5	Lithium Iron Phosphate			
Vendor C - 1	Calorimetry	2	Primary: Lithium	D	15	New
Vendor C - 2	Bullet	2 (3)	Sulfuryl Chloride			

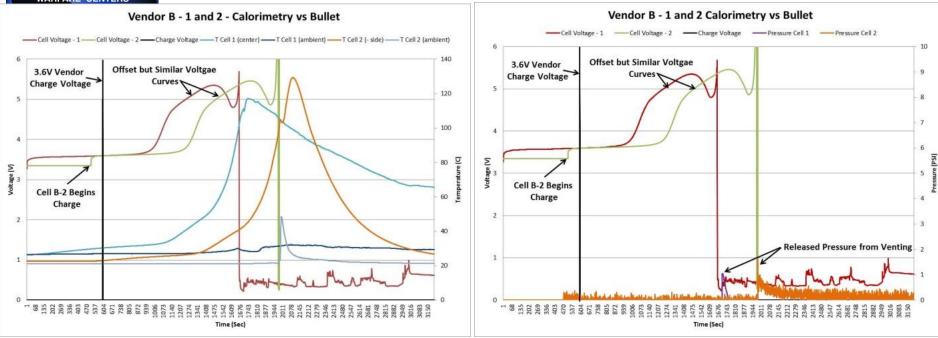
Vendor A – Rechargeable / 18650 (3.2AHr)



Vendor A Observations (Calorimetry 2 Cells / Bullet 1 Cell)

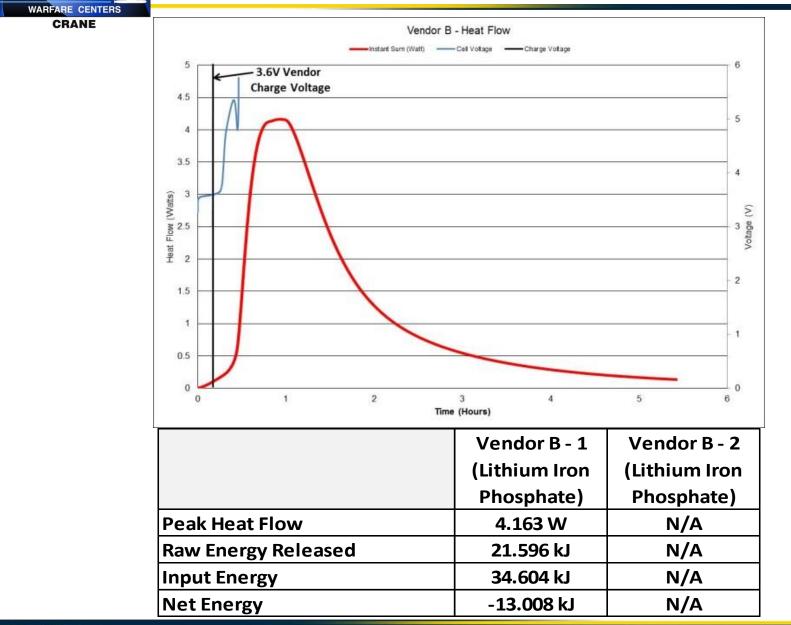
- Calorimetry tested cells did not vent due to internal thermal fuses
 - Fuses opened at different temperatures, 57.9°C and 76.6°C
 - Slight variation in overcharge voltage curves
- Bullet tested cell did vent;
 - 6°C variation in ambient temperature
- All test results show similar voltage, temperature, and heat flow trends
 - Suggests repeatable process that is similar to established processes

Vendor A – Rechargeable / 18650 (3.2AHr)

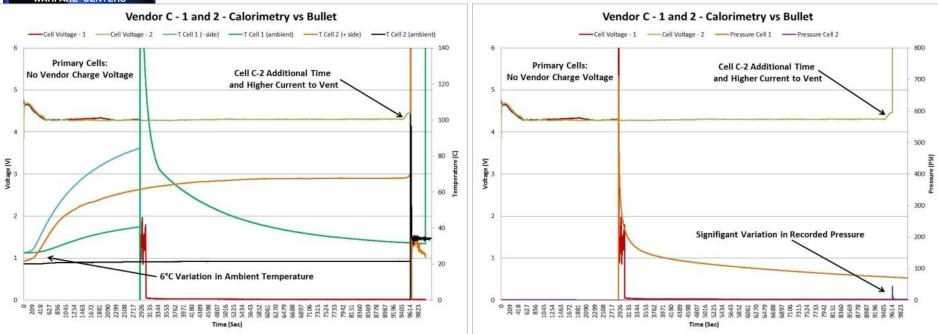


	Vendor A - 1	Vendor A - 2	Vendor A - 3
	(Lithium Ion)	(Lithium Ion)	(Lithium Ion)
Peak Heat Flow	0.839 W	1.342 W	N/A
Raw Energy Released	5.087 kJ	7.609 kJ	N/A
Input Energy	39.114 kJ	43.811 kJ	N/A
Net Energy	-34.027 kJ	-36.202 kJ	N/A

Vendor B – Rechargeable / 26650 (2.5AHr)

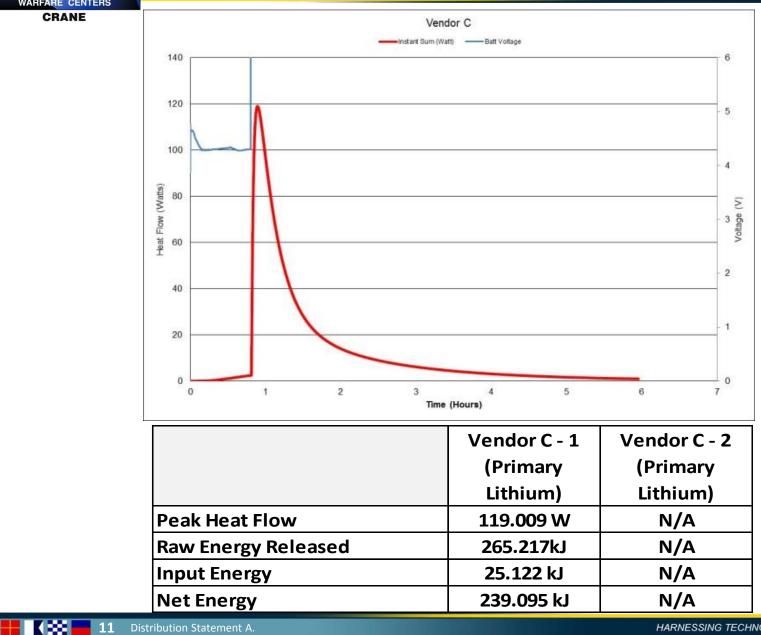

Vendor B Observations (Calorimetry 1 Cell / Bullet 1 Cell)

- Both cells showed a destructive event but in different ways
 - Calorimetry showed a rupture along the side
 - Bullet showed an end cap released
- Testing showed similar charge and temperature curves but offset
 - Variation in state of charge and possible cycle life
- Testing showed very similar pressure curves between the two tests


Vendor B – Rechargeable / 26650 (2.5AHr)

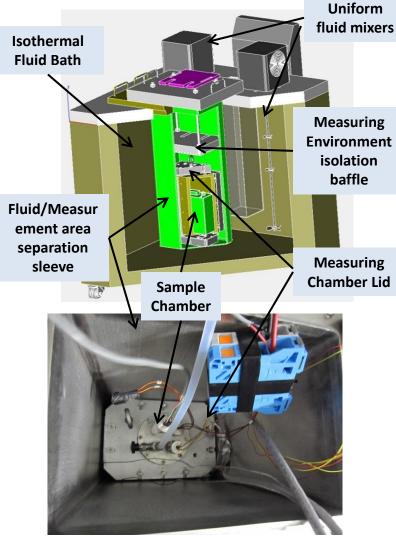
Vendor C – Primary / D Cell (15.0AHr)

- Vendor C Observations (Calorimetry 1 Cell / Bullet 1 Cell)
 - Both cells showed a destructive event and were fully consumed
 - Temperature & pressure sensors (inside the containment vessel) were maxed during testing
 - Bullet test required longer charge duration and an increase in charge current
 - 6°C variation in ambient temperature
 - Testing showed very similar voltage responses to the overcharge
 - Variation in temperature curves could be due to longer charge duration
 - Significant variation in pressure response
 - Variation in enclosure size and failure mechanism may be possible contributor



11 Distribution Statement A.

Vendor C – Primary / D Cell (15.0AHr)


Summary Results

WARFARE CENTERS	Vendor A - 1 (Lithium Ion)		or A - 2 m Ion)		or A - 3 m Ion)	(Lithiu	or B - 1 m Iron ohate)	Vendor B - 2 (Lithium Iron Phosphate)
Capacity / Size	. , .		/ 18650			2.5Ahr / 26650		2.5Ahr / 26650
Enclosure	Calorimetry		Calorimetry		Bullet		metry	Bullet
Max Pressure (psi)	N/A	N	N/A		35.60		12	3.60
Max Cell Temp (°C)			.62	62 499.27		117.18		129.31
Ambient Max Temp (°C)	27.02	27.02 31.		219.93		32.05		48.66
Peak Heat Flow	0.839 W	1.34	2 W	N	/A	4.163 W		N/A
Raw Energy Released	5.087 kJ	7.60)9 kJ	N	/A	21.596 kJ		N/A
Input Energy	39.114 kJ 43.8 2		11 kJ	N/A		34.604 kJ		N/A
Net Energy	-34.027 kJ	-36.2	202 kJ	N	<u>/A</u>	-13.0	08 kJ	N/A
						or C - 2		
				Lithium) Lithi		(Primary		
	Capacity / Size Enclosure Max Pressure (psi) Max Cell Temp (°C) Ambient Max Temp (°C)			15.0Ahr / D Cell 15.0Ahr		-		
			Calorimetry Bu		llet			
			711.61 65		.40			
			1259.58 14		140	8.18		
			1346.17 1		117	7.47		
	Peak Heat Flow		119.009 W		N/A			
	Raw Energy Released Input Energy Net Energy		265.217kJ		N	/A		
			25.122 kJ		N	/A		
			239.095 kJ		N	/A		

Summary Conclusion

- Effort suggests that the Calorimetry process
 - Is repeatable
 - Provides very similar data to the standard methods
 - Specific cell failure mode can cause variation in results
- Lessons learned
 - Calorimetry cell enclosure needs to be sized for the appropriate cell size (Amphr)
 - D cell failure event caused minor leak through seals due to incompatibility with the electrolyte
 - Enclosure size must be selected to ensure test safety but provide adequate data resolution
 - Need to ensure sensors, inside the event environment, are ranged for the worst case event to collect accurate data
 - Conduct testing on a larger sample set and implemented lessons learned to further validate the process
 - Cycle test cells in calorimeter to establish consistent SOC prior to forced overcharge

Questions?

Contact: Rudy Pirani email: <u>badruddin.pirani@navy.mil</u>

Thank you to the NSWC Crane Team Ryan Ubelhor Mark Pate Josh Scherschel William Ridge

HARNESSING TECHNOLOGY FOR THE WARFIGHTER