

Methods and Metrics for Real-Time Task Performance Assessment in Crewed Spacecraft

Kevin Duda, **Zahar Prasov**, Stephen Robinson, Stephen York, Patrick Handley, John West

NDIA Human Systems Conference February 10-11, 2015

This work was supported by the National Space Biomedical Research Institute through NASA NCC9-58

Overview

- Task: Control of a complex vehicle.
- Scenario: Shared control between operator(s) and control software.

- Objective: Ability for an operator to maintain level of Workload and Situational Awareness without sacrificing system performance.
 - particularly during changes in LOA

Why Real-Time Performance Metrics?

- HSI Metrics: Comprehensive assessment of "human + system" state and task performance.
- Real-time Evaluation:
 - Provides context for interpreting operator actions
 - Include human-system performance as a feedback parameter
 - Contributes to future system design

What Constitutes Desirable HSI Metrics?

Situational Awareness

- Objective
- Unobtrusive
- Operationally valid
- Reported in a manner that allows the operator to make real-time adjustments to improve performance

Simulation Platform

Operationally Relevant Tasks

- Piloted lunar landing
- Orion rendezvous and docking with the ISS
- Simplified Aid for EVA Rescue (SAFER)

Re-configurable Workstation

Real-time Metrics Engine

- Flight Performance: analysis of vehicle state
- Workload: response time to secondary task
- SA: comparison of actual vehicle state with verbal "callouts"

System Architecture

Real-time Flight Performance Visualization

Mental Workload

- Communication acknowledgement task, proxy for operational task – has operational validity*
- Illuminated every 4-6 seconds
- Acknowledged by operator by pressing the Blue or Green button on the joystick
- Record and analyze response time

*Hainley, C.J., Duda, K.R., et. Al (2013) AIAA Journal of Spacecraft and Rockets

Real-time Mental Workload Visualization

Reaction Time (sec)

Scenario Time (sec)

- Blue Reaction Time (sec)
- Green Reaction Time (sec)
- Threshold Reaction Time (sec)

Situational Awareness

- Verbal callouts of perceived vehicle state fuel, altitude, proximity to a hazard)
- Sample callout: "5 percent fuel"
- Speech processed by time-synchronized automatic speech recognition (ASR)
- SA calculated by comparing actual vehicle state with verbal callout
- Callout must be made within x seconds of actual state to be considered correct

Real-time Situational Awareness Visualization

Callout Count

Scenario Time (sec)

- Required Callouts
- Correctly Made Callouts

Future Applications

- Piloted Aircraft
- Supervisory Control
- Remotely Operated
 Robotics
- Real-time
 Analysis Tools

List of Acronyms

- ASR: Automatic Speech Recognition
- EVA: Extravehicular Activity
- ISS: International Space Station
- LOA: Level of Automation
- RMSE: Root Mean Square Error
- SA: Situational Awareness
- SAFER: Simplified Aid for Extravehicular Activity (EVA) Rescue

Methods and Metrics for Real-Time Task Performance Assessment in Crewed Spacecraft

Zahar Prasov Draper Laboratory 617-258-1724 zprasov@draper.com

Forthcoming: Duda, K.R., Prasov, Z., et. Al (2015) IEEE Aerospace Conference

