

Real-Time Operator Physiological Monitoring to Drive Human-Robot Interaction (HRI) Design

Lisa Baraniecki Biomedical Engineer Ibaraniecki@atinc.com

8737 Colesville Rd, Ste. L203 Silver Spring, MD 20910 www.atinc.com

Background

Shared work spaces

Shared or dependent tasks

Shared "mental models"

Conceptualization Manipulation Pattern recognition Computation Expendability

Robot Ability

Shared situation awareness

Affective awareness

Kinetic actions

Limitations

- The capabilities of robots are constrained by interaction limitations
 - Effectiveness of automation is dependent on human control capabilities
 - Robot performance is often dictated by operator skill
 - Interaction is largely dictated by interface design

Art vs. Science

- Interface design is currently more of an art than a science
 - Often based on engineering principles and robot functionality
 - Designers depend on user adaptability
 - Significant training time is currently required

- Interfaces must account for dynamic changes in interaction parameters
 - -Human/Robot/Mission parameters
 - -Environment/Dispositions/SOPs/ROEs
- Effective human-robot team interaction must optimize task allocation
 - Exploit strengths and capabilities of humans and machines
 - -Compensate for limitations of humans and machines

Efforts in HRI

- DRC Evaluation
- Dynamic Robot Operator Interface Design (DROID) Assessment, Guidance, and Engineering Tool (AGENT)

Primary Task

Interface

Physiological Metrics

- Provide objective assessment of operator state
 - Cognitive and affective state detection
 - Verbal vs Spatial working memory load
- Can be empirically correlated to performance metrics
 - Insight into underlying cognitive/ psychomotor/ affective processes

Findings

- -Support modularity and redundancy
- Customizable to specific mission, operator, and robot configurations
- -Able to be reconfigured on the fly
- -Automatically reconfigure in response to:
 - -Operator state
 - -Robot state
 - -Environmental factors

HRI Design Ontology

 \mathcal{O}

Design Ontology (Mission)

- Ontology relates concepts within underlying taxonomy
 - Smart agent software architecture, underlying database and ontology to support automated HRI design guidance
 - Formulate ontologies to allow analysis using an autonomous reasoning agent
 - Set of relationships are of particular importance for analysis
 - Based on scientifically-grounded design principles and validated assessment metrics

- Based on Multi-disciplinary HRI design process
 - Involve stakeholders early in design process
 - Leverage strengths/weaknesses of humans and robots
 - Act as a translator between humans and robots
 - Mission-centric approach
 - Multi-modal and adaptive interfaces

Taxonomy of Human and Robot Skills

Take Home

- HRI should be considered from the beginning influencing robotic design
- Empirically-based methodology is needed
- Operator physiological monitoring can provide objective and quantifiable data to drive HRI design and assessment
- Real-time physiological measures can be used to drive adaptive interfaces

Questions?