

ARL

Characterization of the Optical Computer Aided Training (OCAT) system: Novel application of a training aid for small arms human performance research and development

Frank Morelli¹, Thomas C. Fry¹, William D. Ludwig² & Douglas J. Struve¹ U.S. Army Research Laboratory (ARL), Human Research and Engineering Directorate (HRED), Dismounted Warrior Branch (DWB)¹

and

Sensors and Electron Devices Directorate (SEDD), Acoustic, E-field and Electromagnetic Sensing Branch²

UNCLASSIFIED

DISTRIBUTION UNLIMITED

The Nation's Premier Laboratory for Land Forces

RDECOM Mission and Project Background **ARL**

ARL HRED Dismounted Warrior Branch (DWB)

- Basic/applied research and development
- Human performance and human factors assessment
 - small arms weapons systems
 - target engagement, marksmanship
 - biomechanics, Soldier worn/carried equipment

Characterization of the Optical Computer Aided Training (OCAT) system

- Purpose
 - Target engagement scoring during small arms assessments and experimental trials
- Metrics
 - Location of miss and hit (LOMAH) vs. hit/miss only
 - Performance comparison with alternate methods
 - Subsonic, high rate of fire applications

Optical Scoring: OCAT

Optical Computer Aided Training System (OCAT)

- Training aid for civilian shooting sports market
 - Adapted for experimental data collection
- Components
 - Laptop
 - Web camera and spotting scope

U.S. ARMY RDECOM®

- Automated scoring algorithm
- User interface
 - Experimental condition assignment
 - File organization and storage
 - Rapid calibration
- Data Acquisition Procedure
 - Set up target
 - Designate area of interest
 - Assign point of aim (origin) based on physical target characteristics, and fire

Alternate Scoring Methods

ACOUSTIC Scoring

- Pros
 - rapid data acquisition
 - large data sets
 - high measurement precision within weapon effective range
 - scoring of target misses
- Cons
 - measurement precision degrades as projectile approaches weapon effective range

DISTRIBUTION UNLIMITED

- supersonic projectiles only
- high maintenance costs
- potentially cumbersome to program/operate

Alternate Scoring Methods

MANUAL Scoring

- Pros
 - risk of data loss is low
- Cons
 - very slow
 - low measurement precision
 - logistically cumbersome

The Nation's Premier Laboratory for Land Forces 5

Alternate Scoring Methods

DIGITAL Scoring

- Negative
 - very slow
 - potential image capture requirement
 - logistically cumbersome
- Positive
 - high measurement precision

Questions, Methods and Metrics

Does the physical span of the hole (i.e., perforation diameter) affect scoring accuracy?

- Four (4) ammunition types (and corresponding weapon systems) to vary diameter of hole for the hit
- Does the distance between the camera/scope and target affect scoring accuracy?
- Five (5) camera/scope-target distances: 10-25-50-75-100 meters
- How well does optical scoring accuracy correlate with digital scoring accuracy?
- Paper target on plywood backer/frame
- 30-round groups, spread evenly across target quadrants
- Paper target image capture, Cartesian coordinate (x,y) hit locations digitally scored

How reliable is hit/miss capture rate across targets?

Proportion of shots fired to shots captured

Results: Accuracy

Variability for scoring accuracy as a function of ammunition type (i.e., perforation diameter) or camera/scope-to-target distance?

• Pearson's r: strong across target sessions, irrespective of ammunition type used or placement of camera/scope relative to target

STRIBUTION UNLIMITED

Target 03 - 7.62 mm, 10 M

U.S. ARMY RDECOM®

Target 16 - 5.56 mm, 100 M

Target 09 - 5.56 mm, 50 M 12.00

10.00

8.00 6.00 4.00 2.00

.00

4.00

-6.00 -8.00

-2.00.00

♦ Optical ♦ Digital

DISTRIBUTION UNLIMITED

-5.00 🔶

The Nation's Premier Laboratory for Land Forces 9

UNCLASSIFIED

-10.00

U.S.ARMY

Results: Reliability

Error Sources

- Scope movement due to wind, vibration
- Interference from sunlight (ambient IR) – shadowing
- Splintering of backer creating tears, hole deformation

Proportion of Hits Captured for Optical Scoring across Targets Scope/Camera to Target Distance

		10 M	25 M	50 M	75 M	100 M
Diameter	5.56 mm	0.93	0.67	0.93	1.00	0.67
	6.8 mm	0.90	0.90	0.90	0.87	0.97
	7.62 mm	0.23	0.87	1.00	0.90	0.80
	9 mm	0.70	1.00	1.00		

Mitigation

UNCLASSIFIED

- Dampened movement on the spotting scope/camera by suspending a weight
- Shrouded the target to maintain consistent ambient lighting, resulting in higher hit capture rates
- Used Coroplast backer to prevent wood splintering

The Nation's Premier Laboratory for Land Forces 10

- Potentially viable technology for data collection during human performance, weapon system experimental trials (accurate)
- Mitigation of camera/scope movement and protection from ambient light variability a requirement during data collection, otherwise scoring reliability, accuracy variability is unacceptable
- Optical Scoring
 - faster than manual scoring
 - potential accuracy on par with digital, acoustic scoring
- No projectile velocity-dependent loss of fidelity due to shooter-target range or subsonic ammunition selection (such as when employing an acoustic system)
 - both subsonic and supersonic munitions are viable options when using optical targetry

Future Efforts

ARL

- Assessment of reliability with refined movement mitigation
- Data capture for rapid fire, burst and near-synchronous (e.g., shotgun) shooting sequences
- Data capture for multiple targets engaged in close temporal contiguity (e.g., multiple shooters engaging distinct targets)
- Examine the effect of scope/camera-to-target eccentricity on scoring accuracy
- Examine near-keyhole target hit fidelity (since patterns were intentionally spread across target quadrants)

POC: Frank Morelli, U.S. Army Research Laboratory-HRED, Dismounted Warrior Branch; frank.morelli.civ@mail.mil