Contextualizing Cognitive State & Event Detection for Human-Autonomy Integration

Using Physiological & Behavioral Information

NDIA HSC February 2015

 Cognitive State and Event
 Detection (CSED) has potential
 to greatly enhance humanautonomy integration

- Investigated by previous and ongoing programs:
 - Augmented Cognition (AugCog)
 - High-Def. Cognition (HD Cog)
 - Cognition and Neuroergonomics
 Collaborative Technology
 Alliance (CaN CTA)
 - Autonomous Research Pilot Initiative (ARPI)

Background

Barriers to CSED

- Numerous challenges including
 - Complexity of the signals involved
 - Hardware limitations (e.g. resolution & reliability)
 - Software limitations (e.g. offline vs. online processing)
- Many CSED research paradigms lack critical contextual information needed to facilitate proper function in complex environments
- Brain function is situated

Critical Need (1): Hardware

High

Proximity

đ

Cognitive

Function

- How to measure variables for both CSED & context?
 - Brain measures
 - Electroencephalogram (EEG) & functional Near-Infrared spectroscopy (fNIR)
 - Physiology & behavior
 - Pupillometry, eye tracking, electrodermal activity
 - Heart rate, respiration, motion capture
 - Environmental sensors
 - Ambient light, temp., background noise, scene capture

High

Low

Low

Technology

Readiness

Integrating Context (1): Hardware

- Lightweight & portable hardware solutions are needed
- Sensor integration & timing is a critical issue

Current state-of-the-art

Adapted from McDowell et al., IEEE Access, 2013.

Critical Need (2): Software

- Most current work on classifying brain activity is in the area of brain-computer interfaces (BCI)
 - Limited settings
 - Primarily to restore impaired function

 Ambiguity of complex scenarios places high burden on CSED systems

Integrating Context (2): Software

 Integrating behavioral context not only helps model signal quality but can also provide information about the timing and trajectory of cognitive states & events

Current Work: Software

- Integration through advanced computational methods
 - Statistical approaches
 - Hierarchical discriminative components analysis, regularized generalized linear models, power-based methods
 - Fuzzy evidence theory & Bayesian approaches

Current Work: Data Collection

- dcs
- In conjunction with researchers at Army Research Laboratory, UC San Diego, University of Michigan
 - High density 64 \rightarrow 256 EEG
 - Eye movement data
 - Heart rate / respiration
 - Electrodermal activity
 - Motion capture / accelerometry
 - Audio / video
 - Scene capture
 - Seated & mobile tasks
 - Individual & team tasks

Stephen Gordon, PhD Advanced Sciences Branch, DCS Corp.

<u>sgordon@dcsorp.com</u>, 571-227-6203

Additional Information :

www.cancta.net