Integrating Dynamic Systems Simulation into the Design process of a 105mm Gun’s Recoil System

Presented at the NDIA Joint Armaments Forum, Exhibition & Technology Demonstration Baltimore, Maryland
22 April 2015

Presented by:
Naval Surface Warfare Center, Dahlgren Division, Code G32
Doug Ramers, Ph.D., P.E.
Phone 540-653-6023
Email: Douglas.Ramers@navy.mil
Problem Description: Recoil System

Breech Force

Calculated 106mm Charge 7 Breech Force

Transmitted recoil force

Counter Recoil Gas Spring

Gun Tube & Breech

Bearing force

Hydraulic Recoil Brake

Variable orifice

Packing & Seal friction force

Design Brake Force

Rod pull force

Design Brake Force

Distribution Statement A: Approved for Public Release; Distribution is Unlimited
Objectives

- Develop and simulate models of recoil system functionality to:
 - Generate hydraulic orifice area design specifications,
 - Generate buffer area design specifications,
 - Generate hydraulic and pneumatic pressure and friction forces for cylinder packing, and seal design specifications,
 - Verify suitability of dimensional design specifications, and
 - Verify and predict system performance.
 - Target recoil and force requirements at nominal T&P, charge 7 based breech force at zero elevation

- Key References
 - MIL-HDBK-785(AR) DESIGN OF TOWED ARTILLERY WEAPON SYSTEMS (1990)
Breech Force

- Driving force for recoil system
- Impulse (I)
 - Integral of breech force curve
 - Used to design brake force function
Brake Force Functions

- Brake force curve design
 - Average Brake Force: \(K_0 = \frac{l^2}{2m_{\text{recoil}} L_{\text{recoil}}} \)
 - Recoil time: \(t_{\text{recoil}} = \frac{l}{K_0} \)
 - Estimate friction and gas spring forces
 - Design trapezoidal \(F_{\text{Brake}}(t) \), over recoil duration

Design Brake Force

Distribution Statement A: Approved for Public Release; Distribution is Unlimited
Designing Variable Orifice

\[ae(x) = a_0(x) \times C_d = A_{hyd} \times v(x) \times \sqrt{\frac{\text{density} \times A_{piston}}{2 \times F_{orifice}(x)}} \]

- Simulate: \(B(t) \) and \(\text{Brake}(t) \) \(\Rightarrow \) \(v(t) \), \(F_{\text{orifice}}(t) \), \(x(t) \) \(\Rightarrow \) \(v(x) \), \(F_{\text{orifice}}(x) \)

Equation of motion with breech and brake force
Simulink and Simscape

- Simulink
 - Graphical numerical programming
 - Numerically solve differential equations
 - Directional flow - evaluation order

- Simscape (and Simhydraulics)
 - Graphical *physical modeling*
 - Through and across variables bidirectional
 - Encapsulate equations for all behaviors of components
Simhydraulics Variable Orifice

The block simulates a variable orifice of any type as a datasheet based model. To parameterize the block, three options are available: (1) by maximum area and control member stroke, (2) by a table of orifice area vs. control member displacement, and (3) by the pressure-flow rate characteristics. The lookup table function is used in the second and third cases for interpolation and extrapolation. Three methods of interpolation and two methods of extrapolation are provided to choose from.

Connections A and B are hydraulic conserving ports associated with the orifice inlet and outlet, respectively. Connection S is a physical signal port. The block positive direction is from port A to port B. Positive signal at port S opens or closes the orifice, depending on the value of the Orifice orientation parameter.

\[
q = C_D \cdot A(h) \sqrt{\frac{2}{\rho}} \cdot \frac{p}{\left(\frac{p^2}{2} + p_{cr}^2\right)^{1/4}}
\]

\[
p = p_A - p_B
\]

\[
p_{cr} = \frac{\rho}{2} \left(\frac{Re_{cr} \cdot v}{C_D \cdot D_H}\right)^2
\]

\[
h = x_0 + x \cdot or
\]

\[
A(h) = \begin{cases} h \cdot A_{max}/h_{max} + A_{leak} & \text{for } h > 0 \\ A_{leak} & \text{for } h \leq 0 \end{cases}
\]

\[
D_H = \sqrt{\frac{4A(h)}{\pi}}
\]
Recoil System Model
Simulation: Force

Target average force 10,500 lbf

Calculated average force 10,150 lbf

Expected recoil time
Validation: Recoil and Velocity

- Expected recoil: 48"
- Expected max recoil velocity: 37 fps
- Maximum hydraulic pressure: 550 psi
- Maximum gas pressure: 880 psi
- Maximum gas temperature: 150°F
Conclusions and Continuing Work

- **Dynamic system simulation critical to design process**
 - Highly interdependent interacting subsystems
 - Exploration of design variables and trade studies
 - Actual dimensional design of subsystems (buffer, replenisher)
 - Sensitivity analysis
- **Continuing work**
 - Continue refining model detail
 - Explore and complete counter recoil buffer design
 - Conduct environment and operational mode sensitivity analysis
 - Validate model
 - Tests prototype subsystems
 - Range test development gun-recoil system
 - Iterative design adjustments using test and simulation results