Science of Test: Improving the Efficiency and Effectiveness of DoD Test and Evaluation

Dr. V. Bram Lillard Technical Advisor to the Director, Operational Test and Evaluation (DOT&E)

23 July 2014

- Test Planning
 - <u>Design of Experiments (DOE)</u> a structured and purposeful approach to test planning
 - » Ensures adequate coverage of the operational envelope
 - » Determines how much testing is enough statistical power analysis
 - » Provides an analytical basis for assessing test adequacy
 - Results:
 - » More information from constrained resources
 - » An analytical trade-space for test planning
 - » Defensible test designs

• Test Analysis and Evaluation

- Using <u>statistical analysis methods</u> to maximize information gained from test data
- Incorporate all relevant information in analyses
- Ensure conclusions are objective and robust

7/28/2014-3

DOT&E Guidance

Design of Experiments in Operational Testing

Additional DOT&E Guidance on DOE

• Flawed application of DOE memo emphasizes:

- Importance of clear test goals Focus on characterization of performance, vice testing to specific requirements
- Mission oriented metrics Not rigidly adhering to requirements documents and using continuous metrics when possible
- Not limiting factors to those in requirements documents
- Avoiding single hypothesis tests
- Considering all factors and Avoid confounding factors
- Best Practices for Assessing Statistical Adequacy memo emphasizes:
 - Clearly identifying a test goal
 - Linking the design strategy to the test goal
 - Assessing the adequacy of the design in the context of the overarching goal
 - Re-emphasizes the importance of statistical power when used correctly.
 - Highlights quantitative measures of statistical test adequacy (power, correlation, prediction variance)

DOT&E Guidance on Surveys (June 2014)

- Surveys are an important aspect of the evaluation of operational effectiveness and suitability
- Surveys are appropriate for quantitatively measuring operator and maintainer thoughts and opinions
 - Obtain data on which we can employ robust statistical analyses
- Use surveys only when appropriate
 - Do not ask operators about accuracy/timeliness of the system
- Use the right survey
 - Many established/proven surveys exist no need to reinvent the wheel
- Employ best practices for writing and administering surveys
 - Memo provides a best practices guide attachment

-					In order to obtain accurate information fra well written, ensure that adequate respon	on surveys the analy dents are available, by
OFFICE	OF THE 1700 WASHIN	SECRETA DEFENSE PER	NTAGON 1301-1700		the survey is administered, and determine Best practices for each of these are descri-	what method will be ibed in the following
				N 2 2 7014	1. Writing Surveys that Collect Accura	te Data
ERATIONAL TEST NO EVALUATION			50	N 2 0 2014	Custom-made surveys are useful in OT& thoughts specific to the system/goals of the	E because they allow he current test. When
MEMORANDUM FOR COM CE DIRE	MANDIN NTER CTOR, M	G GENERAL	, ARMY TEST AND EVA	AND	are five golden rules to follow to prevent guiding principles when writing survey q	error in the collected pestions:
EV COM F0	ALUATIO MANDER RCE	ON ACTIVIT , OPERATIO	TY DNAL TEST AND EVALU	ATION	 Neutrolity in questions asked and adar respondent's thoughts without unduly unbiased manner and not lead a response. 	ninistration: The goal biasing them. Quest adent towards any pa
COM	MANDER	, AIR FORC	E OPERATIONAL TEST A	AND	Bad: "Do you agree that Good: "Date the derives w	the display is
COM	MANDER CTOR, M	I, JOINT INT	EROPERABILITY TEST O	COMMANE	statement: The display is	s easy to use."
SUBJECT: Guidance on the U (OT&E)	ise and De	sign of Surve	ys in Operational Test and E	Evaluation	The word <i>improved</i> implies that the te "do you agree," the question implies to asking individuals to rate agree/disagn	est team believes the o that agreement is the o ree does not imply a c
Operational tests are de enable a robust and defensible	signed to a determinat	collect a varie	ety of quantitative and qualit in capability. Surveys are a	ative data to key	Knowledge liability: Surveys should a	not ask questions the r
mechanism to obtain needed da which measure the thoughts an	sta to aid the dopinions	he operational of operators	and maintainers, are, therefore	ned surveys ore, essentia	implations in their knowledge.	
elements in the evaluation of a body of scientific research exis	system's o ts on surve	operational ef	fectiveness and suitability. alysis, and administration th	A substantia at we should	functions."	ized me to use a
leverage in OT&E. I have not are not consistently applying b	ed in my re est practice	view of oper rs for survey	ational test plans, however, design and use. This memo	that the OT/ and	Good: "I felt as if I nee	eded more traini
attachment outlines my expecta TEMPs and Test Plans to be w	ations for unitten const	istent with th	and interviews in OT&E. I is guidance.	expect all	It is not possible for individuals to kn	ow if it was the traini
Surveys should be used	to provide	quantitative	data as well as qualitative in	nformation f	ingenuity that ied to success. They may succeeded. They only have knowledg	e about the tasks they
determining (1) the usability of human system integration asse	f the system ssments), (n for actual o 2) the operation	perators and maintainers (a ors' perceptions of the system	component of m's utility	possible tasks. For these reasons the f the second question provides accurate	r data to the analyst.
including their opinions on wh maintainers' perceptions of the	ether the s	ystem aided o	or hindered mission accompl ity, and (4) the effects of sys	lishment, (3) tem design d	Similarly, users should not be asked a	whether they were suc
workload. Surveys are also us (e.g., training, system design).	ed to help	diagnose wh	y certain performance goals	were not m	they would rate their mission accomp the question is not helpful in assessing	lishment. Not only is g the system under te
diagnostic information, to help	explain to	ends in surve	y responses, and for providi- rational testing is tenically to	ng specific	is desired, the tester may elect to ask hindered their ability to accomplish th	whether the user four he mission (a question
system performance across the	operation	al envelope, s	surveys are also used to examine in which a matter might h	nine how us		
(e.g., workload may change as	a function	of mission ty	s in which a system high, o ype).	e employed		1
In operational testing, a	urvey resp	onses can be	used either for diagnostic p	urposes or a		-
the test to assess the system. For	or example	, if the goal o	of the test is to determine if a	an upgraded		
		G				
		ors	Ŋ: 64			
		ocs			4 -	
		do	1			
		2	N: 5	. —		
		LMC				H
				·		
Ð		ji j	N: 3			
0		vdm				
\leq	Type	ž				
	5					
É.	Jser T	Ξr	N: 8	1		
Ĥ,	User T	/theon SFR	N: 8	⊢		
er T	User T	Raytheon CSFR	N: 8	┝	-	
ser T	User T	D Raytheon D CSFR	N: 8	\vdash		

ent: Best Practices of Survey Design, Administration & Analysi

should ensure that the survey i mindful of the context in which used to analyze the survey data. aragraphs

OTAs should emplo

of the survey is to obtain the ins should be phrased in an icular answer.

sproved?" with the

isplay is better. Also by asking esized answer. Conversely, crect answer

l of th

g, the system design, or their own plish the mission, but think the empleted in the test; not all

essful or the degree to which there a knowledge liability, but If a mission-focused cuestion antributed to or

- The purpose of testing is to provide relevant, credible evidence with some degree of inferential weight to decision makers
 - DOE provides a framework for the argument and methods to help us do that systematically

Four Challenges faced by any test

- 1. How many? <u>Depth</u> of Test
- 2. Which Points? <u>Breadth</u> of Testing spanning the operational envelope
- 3. How Execute? <u>Order</u> of Testing
- 4. What Conclusions? Test <u>Analysis</u> drawing objective, robust conclusions while controlling noise

• DOE Provides:

- the most powerful allocation of test resources for a given number of tests.
- a scientific, structured, objective way to plan tests.
- an approach to integrated test.
- a structured, mathematical analysis for summarizing test results.

DOE changes "I think" to "I know"

What test methods are available?

- DWWDLT "Do what we did last time"
- Special/critical cases
- One-Factor-At-A-Time (OFAT)
- Historical data data mining
- Observational studies
- Design of experiments
 - » Purposeful changing of test conditions

All tests are designed, many poorly!

- Need to execute a sample of <u>n</u> drops/events/shots/measurements
- How many is enough to get it *right*?
 - 3 because that's how much \$/time we have
 - 8 because that's what got approved last time
 - 10 because that sounds like enough
 - 30 because something good happens at 30!
- DOE methods provide the tools to calculate

A Structured Approach to Picking Test Points (Tied to Test Objectives and Connected to the Anticipated Analysis!)

Test Design Supports the Model (The Analysis we expect to perform)

Picking Test Points Case Study: JSF Air-to-Ground Missions

- Operational Envelope Defined 128 possible cases
- Test team identified factors and their interactions and refined them to identify the most important aspects of the test design

- Test team used combination of subject matter expertise, and test planning knowledge to efficiently cover the most important aspects of the operational envelope
- Provided the data are used together in a statistical model approach, plan is adequate to evaluate JSF performance across the full operational envelope.
- Determined that 21 trials was the minimum test size to adequately cover the operational space
 - Ensures <u>important</u> factor interactions will be estimable
- Note the significant reduction to the 128 possible conditions identified.

				Variant - A					Variant - B										
				Category-B Threat			Category-C Threat		Category-B Threat			Category-C Threat			2				
					w LC	Hi Ti	gh LC	Lo Ti	ow LC	Hi; TI	gh LC	Lo Ti	w LC	Hi, TI	gh LC	Lo Ti	w LC	Hi TI	gh LC
				L	н	L	н	L	н	L	н	L	н	L	н	L	н	L	н
	Day	JDAM			1							1							
		Day	LGB								1	1			1				
	2-311p	Night	JDAM	1							1					1			
	Da		LGB		1									1			1		
		Dav	JDAM					1							1				
		Day	LGB			1			1									1	
	4-3iiip	Night	JDAM		1									1					1
		Night	LGB		1			1											

- TEMP test design required 16 trials
 - Would have been insufficient to examine performance in some conditions
- Updated test design requires 21 trials but provides full characterization of JSF Pre-planned Air-to-Ground capabilities.
- New test design answers additional questions with the addition of only 5 trials:
 - Is there a performance difference between the JSF variants?
 - » Do those differences only manifest themselves only under certain conditions?
 - Can JSF employ both primary weapons with comparable performance?

4. What Conclusions? (Traditional Analysis)

• Cases or scenario settings and findings

Sortie	Alt	Mach	MDS	Range	Tgt Aspect	OBA	Tgt Velocity	Target Type	Result
1	10K	0.7	F-16	4	0	0	0	truck	Hit
1	10K	0.9	F-16	7	180	0	0	bldg	Hit
2	20K	1.1	F-15	3	180	0	10	tank	Miss

• Run summaries

- Subject to removing "anomalies" if they don't support expected trend
- No link to cause and effect
- Report <u>average performance</u> in common conditions or global average alone
 - Compare point estimate to threshold
 - No estimate of precision/uncertainty

4. What Conclusions? (DOE Analysis)

• DOE enables tester to build math-models* of input/output relations, quantifying noise, controlling error

 $\left| \mathsf{Responses} = f(\mathsf{Factors}) + \varepsilon \right|$

- Enables performance characterization across multiple conditions
 - Find problems with associated causes to enable system improvement
 - Find combinations of conditions that enhance/degrade performance (lost by averaging)
- Rigorous determination of uncertainty in results how confident am I that it failed threshold in Condition X?

^{7/28/2014-17} * Many model choices: regression, ANOVA, mixed models, Censored Data, Gen Linear Model, etc. etc.

Case Study

Case Study: Submarine Detection Time

System Description

- Sonar system replica in a laboratory on which hydrophone-level data, recorded during real-world interactions can be played back in real-time.
- System can process the raw hydrophone-level data with any desired version of the sonar software.
- Upgrade every two years; test to determine new version is better
- Advanced Processor Build (APB) 2011 contains a potential advancement over APB 2009 (new detection method capability)

Response Variable: Detection Time

- Time from first appearance in recordings until operator detection
 - » Failed operator detections resulted in right censored data
- Factors:
 - Operator proficiency (quantified score based on experience, time since last deployment, etc.)
 - Submarine Type (SSN, SSK)
 - System Software Version (APB 2009, APB 2011)
 - Array Type (A, B)
 - Target Loudness (Quiet, Loud)

		SS	SK	SSN		
		Quiet	Loud	Quiet	Loud	
APB-11	Array A	12	12	6	12	
	Array B	6	6	6	6	
APB-09	Array A	8	8	4	8	
	Array B	4	4	4	4	

- A full-factorial design across the controllable factors provided coverage of the operational space
- Replication was used strategically:
 - Allowed for characterization across different operator skill levels (randomly assigned)
 - Provided the ability to support multiple test objectives
 - Skewed to the current version of the system under evaluation (APB-11)
- Power analysis was used to determine an adequate test
 - Power was 89% detecting a 1σ difference between APB versions primary goal of the test
 - Power was > 99% for all other factor differences
 - Power was lower for APB due to blocking by day

		SS	SK	SSN		
		Quiet	Loud	Quiet	Loud	
	Array A	16	18	5	14	
APB-11	Array B	10	5	6	3	
APB-09	Array A	5	7	1	4	
	Array B	3	1	2	0	

- Execution did not match the planned test design
- Test team used the DOE matrix at the end of the first round of testing to determine the most important points to collect next
 - Real time statistical analyses revealed that there was only limited utility in executing the remainder of the planned test
 - Analysis revealed that there was a significant difference in APB versions
 - Additionally all other factors considered were statistically significant due to larger effects than anticipated

- Advanced statistical modeling techniques incorporated all of the information across the operational space.
 - Generalized linear model with log-normal detection times
 - Censored data analysis accounts for non-detects
- All factors were significant predictors of the detection time

Factor/Model Term	Description of Effect	P-Value
Recognition Factor	Increased recognition factors resulted in shortened detection times	0.0154
APB	Detection time is shorter for APB-11	0.0020
Target Type	Detection time is shorter for SSN targets	0.0003
Target Noise Level	Detection time is shorter for loud targets	0.0017
Array Type	Detection time is shorter for Array B	0.0004
Type* Noise		0.0601
Type* Array	Additional model terms improve predictions. Third	0.9286
Noise*Array	therefore all second order terms are retained.	0.8547
Type* Noise*Array		0.0643

- Median detection times show a clear advantage of APB-11 over the legacy APB
- Confidence interval widths reflect weighting of data towards APB-11
- Statistical model provides insights in areas with limited data

- Take-away: we already have good science in our system development
 - We understand sys-engineering, guidance, aero, mechanics, materials, physics, electromagnetics ...
 - DOE provides us the Science of Test
- Design of Experiments (DOE) a structured and purposeful approach to test planning
 - Ensures adequate coverage of the operational envelope
 - Determines how much testing is enough
 - Quantifies test risks
 - Results:
 - » More information from constrained resources
 - » An analytical trade-space for test planning
- Statistical measures of merit provide the tools needed to understand the quality
 of any test design to support statistical analysis
- Statistical analysis methods
 - Do more with the data you have
 - Incorporate all relevant information in evaluations
 - » Supports integrated testing
- DOT&E Memos provide expectations and outline best practices
 - Flawed Application of DOE to OT&E
 - Assessing Statistical Adequacy of Experimental Designs in OT&E

Current Efforts to Institutionalize Statistical Rigor in T&E

- DOT&E Test Science Group
 - Composed of DOT&E, OTA Technical Advisors, DDT&E, Service T&E Executives, advisors from academic community
 - Focused on implementation of test science initiatives
 - Last 3 years of efforts are documented in DOT&E Test Science Roadmap Document
 - » http://www.dote.osd.mil/pub/reports/20130711TestScienceR oadmapReport.pdf
- Goals/Accomplishments:
 - Assess the OTA workforce size, capabilities, education and new hire needs
 - Roadmap for training/education and other OSD support needed to increase test design and analytic capabilities
 - Case Studies!
 - » Examples of statistical design and analysis techniques appropriate for T&E
 - Guidance for the documentation of test design and statistical rigor in TEMPs, Test Plans and Reports.
 - » TEMP Guidebook
 - » DOE memos, Survey Design Guidance
 - Developed(ing) Best Practices for good test design and analysis of test data
 - Formation of advisory board to support DT and OT communities

- DOT&E Test Science Roadmap published June 2013
- DDT&E Scientific Test and Analysis Techniques (STAT) Implementation Plan
- Scientific Test and Analysis Techniques (STAT) Center of Excellence provides support to programs
- Research Consortium
 - Navel Post Graduate School, Air Force Institute for Technology, Arizona State University, Virginia Tech
 - Research areas:
 - » Case studies applying experimental design in T&E.
 - » Experimental Design methods that account for T&E challenges.
 - » Improved reliability analysis.
- Current Training and Education Opportunities
 - DOT&E AO Training: Design, Analysis, and Survey Design
 - Air Force sponsored short courses on DOE
 - Army sponsored short courses on reliability
 - AFIT T&E Certificate Program
- Policy & guidance
 - DOT&E Guidance Memos
 - DOD 5000
 - Defense Acquisition Guidebook

Best Practices and Areas for Improvement

- Best Practices
 - Continuous Metrics where possible
 - Power calculations consistent with test goal (rarely use single hypothesis test)
 - Power curves to show tradeoffs
 - Include all relevant factors (cast as continuous where possible!) in design
 - Test goals not limited to verifying requirements under limited set of conditions
 - Use of statistical measures of merit to judge designs

Areas to Emphasize/Improve Upon

- Analysis of data commensurate with DOE design
 - » Employ regression techniques (linear regression, logit for binomial)
 - » Include "recordable" variables as covariates
 - » Model terms included based on factors/levels varied
- Model verification methods and model reduction methods
- Employment of advanced methods
 - » Bayesian approaches to reliability (data from multiple test phases)
 - » Censored data analysis for continuous measures
 - » Regression models not limited to the normal-distribution assumption
 - » Regression models flexible to all effects in the data (e.g., variance terms)
- Power calculations for more advanced model approaches
- Survey Design and Use

Backups

Design of Experiments has a long history of application across many fields.

- Agricultural
 - Early 20th century
 - Blocked, split-plot and strip-plot designs
- Medical
 - Control versus treatment experiments
- Chemical and Process Industry
 - Mixture experiments
 - Response surface methodology
- Manufacturing and Quality Control
 - Response surface methodology
 - DOE is a key element of Lean Six-Sigma
- Psychology and Social Science Research
 - Controls for order effects (e.g., learning, fatigue, etc.)
- Software Testing
 - Combinatorial designs test for problems

- Pratt and Whitney Example
 - Design for Variation process DOE
 - Turbine Engine Development
- Key Steps
 - Define requirements (probabilistic)
 - Analyze
 - Design experiment in key factors (heat transfer coefficients, load, geometric features, etc.)
 - Run experiment through finite element model
 - Solve for optimal design solution
 - Parametric statistical models
 - Verify/Validate
 - Sustain
- Results
 - Risk Quantification
 - Cost savings
 - Improved reliability

We Need an Objective, Rigorous, Framework to Defend Adequacy of Proposed Tests

Combinations of Conditions Alone and Combined That May Cause Performance Problems for the System Under Test

X – cannot estimate

- Traditional design based on selection of real-world "scenarios" or "vignettes"
- Number of runs same for both cases

- Power = Prob(Detect problem if problem exists)
- Power and confidence are only meaningful in the context of a hypothesis test! Example:

 H_0 : Detonation slant range is the same with and without degaussing H_1 : Detonation slant range differs when degaussing is employed

 $H_0: \mu_D = \mu_{ND}$ $H_1: \mu_D \neq \mu_{ND}$

- Power is the probability that we conclude that the degaussing system makes a difference when it truly does have an effect.
- Similarly, power can be calculated for any other factor or model term

Real World

- Compared several statistical designs
 - Selected a replicated central composite design with 28 runs
 - Power calculations are for effects of one standard deviation at the 90% confidence level

