Physical Mockups

Redefining the “Collaborative Work Environment” and Improving Human Systems Integration (HSI)

Jessica Vomocil

Human Systems Integration Engineer
L-3 Communications– Maritime Systems
Collaborative Work Environment (CWE)

Collaborative Work Environment: concept derived from virtual workspaces which enable professionals to work together regardless of their geographical location.

Elements include:
- E-mail and Instant messaging
- Application sharing
- Video conferencing
- Document management and version control system

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
CWEs offer numerous advantages in collaboration and design but how does it impact integration, and in particular HSI?
Integration Team

- End user communicates needs to government
- Government provides requirements/CONOPS to address user needs
- Contractor and Engineering Teams create design to meet the requirements
- Requirements become constraints for design
- CWE limited capability to involve end users and limited reach back to stakeholders

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Limitations of CWEs

- Need for experienced users
- Data exchange, import and export
- Limited licensing (IT overhead)
- Requires consistent tool set, units of measure
- End User Involvement
- Processing power—Difficult to edit in real time
- Limited interactions between geographically distributed personnel
 - “Stovepipes”
End User Involvement

“We do not see things as they are; we see things as \textit{we} are.”

– Anais Nin, Author

Engineers/ Designers ≠ Users/ Operators

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Physical mockup on the Ship to Shore Connector (SSC) project provided a collaborative environment

- Made easy to solicit additional operator input
- Identify solutions early in design

Considerations:
- Initial cost
- Available space
- Overhead costs for operations and maintenance
- Size and nature of the project
- Travel costs for team members to take advantage of mockup
- Future long term training utilization
L-3 Maritime Systems

- Integrator of naval and marine electrical and electronic systems
 - Machinery and damage control
 - Integrated bridge and navigation systems
 - Electronic propulsion systems

- Three facilities
 - New Orleans, LA
 - Leesburg, VA
 - Ayer, MA

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Replacement for the Landing Craft Air Cushion (LCAC)

Deployed as part of the Amphibious Fleet

Transport weapon systems, equipment, cargo and personnel

- High speed
- High Payload
- Day or night ops
Ship-to-Shore-Connector HSI Improvements

LCAC Challenges
- Maintenance hours too large
- Training and attrition rates

SSC Improvements
- Improved maintenance concept
 - Targets top 25 high drivers
- Change from 3-person to a 2-person “flight crew”
 - Automation of labor intensive tasks
 - Redundant pilot/co-pilot controls
 - Updated crew member tasking

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Preliminary Design completed by US Navy prior to contract solicitation

Contract awarded to Textron Systems Marine & Land Systems (TS M&LS)

L-3 Communications Maritime Systems responsible for Command, Control, Communications, Computers, and Navigations (C4N) System

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Ship-to-Shore Connector

Original Concept for SSC Two Person Flight Crew

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Full-scale mockup of starboard side cabin (Command Module)

Used throughout program life cycle

Preliminary Design Phase: foam core for initial fit and HMI

Detailed Design Phase: foam core and prototype of HMI (controllers and input devices)
System Integration Lab (SIL)

- Conduct integration testing of C4N hardware/software after detailed design
 - Outfitted with flight hardware
 - SIM/STIM capabilities

- Mitigate high risk SW development items
 - Flight controller

- Verify anthropometric human factors requirements
Early identification of structural interferences in 3-D craft model

HSI issues identified in SIL
- Different concerns identified by engineer vice operator

August 2013 USN launched a design study to address issues

Concentrated engineering design effort
- Focus on five key design elements
- Constraints set by customer
Design Study Outcomes

- Improved seat placement for safety of flight
- Console redesign/improvements from workstation to “Cockpit”
- Upgraded hardware selection
 - User displays
 - User input devices
- Optimize panel location and equipment placement
- Task allocation between crew members
 - Maintained redundancy of critical functions
- Brought together the “stove pipes” and facilitated early integration

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Physical Mockup Overcomes Limitations

- Inherently overcomes many limitations of virtual CWE
 - Independent of user skills
 - No IT overhead
 - No need for data import/export
 - Consistent tools and units
- Improved End User Involvement
- Role of “facilitator”
- Reach back to decision makers
- Real time editing and prototyping

More effective “CWE” led to early identification of integration challenges and improved HSI
Improved End User Involvement

- Identified need to adjust lateral seat placement
 - Operational requirements

- User input drove the initial re-design concepts
 - Safety of flight

- Continued involvement as re-design progressed
 - Task Analysis to support equipment placement
 - Operational scenario to verify design decisions
Role of Facilitator

- Daily planning meeting
 - Review of previous days activities
 - Goals established for day
 - Group organized into smaller working groups with tasks assigned

- Keep group focused on design issues, priorities

- Document and record progress
 - Proposed solution
 - Decision drivers
 - System/operational impact
 - Look ahead/actions

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Design Collaborations

<table>
<thead>
<tr>
<th>Design</th>
<th>Description</th>
<th>Profile, Top View</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flat Panel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Angle Outboard Monitors</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Angle Inboard Monitors</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Angle Inboard Monitors Plus Shift Outboard</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Duplicate Cockpit</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Angle Both Monitors</td>
<td></td>
</tr>
</tbody>
</table>

- Brainstormed multiple console configurations
- Trade-off between HSI requirements and guides and other impacts in priority matrix
 - Viewing angles
 - Viewing distances
 - Ease of manufacturing
 - Anthropometric reach
 - Optimized ability to mount additional equipment

This document consists of general capabilities information that is not defined as technical data under ITAR Part 120.10 or EAR Part 772.
Real Time Editing and Prototyping

- Task Analysis conducted to determine panel and equipment placement
 - Redundant or Singular
- Foam core in SIL with movable components
- Mockup gave general idea and path forward first
- 3-D Model developed to analyze precise values
 - CAD personnel in the SIL
Mockup Use After Design Study

- Early integration of IPTs
 - HVAC
 - Lighting
 - Structure
 - Safety

- Unscheduled use during working group meetings with customer

- Support Test and Evaluation
SIL has also caught the attention of many key stakeholders and helped gain confidence in the program:
- HSI Tech Warrant Holder
- NAVSEA/PEO SHIPS/ PMS 377
- Active Fleet/Users (ACU4 LCAC Craft–Masters)

If a picture is worth 1000 words, how many is a mockup worth?
Jun 2014 hosted LCAC craftmasters in SIL
- Experience ranged from 1 year to 20+ years
- Background in all other LCAC crew positions

Each craftmaster able to climb up and “drive”
- Testing Software component of C4N
- Solicited feedback on design
- Operators gained trust and confidence in the design
Potential Improvements to Mockup: Lessons Learned

- “Think outside of the box”… literally
 - What other components or effects outside of the system might impact our design later?
 - Identify optimal placement of the mockup based on relative placement of the system or component in relation to other

- Measure twice, write it down three times. Document everything.

- Access to actual craft outfittings/equipment as soon as possible
 - Populate with as many items as possible
 - Engineering models of equipment
 - Window fittings, HVAC, overhead lighting
 - Mitigates surprises such as access and interference
Conclusion

- Physical mockup on SSC project overcame limitations of typical CWE
 - Enabled collaboration of all invested parties
 - Optimized use of current technologies and tools
 - Use of Mockup forced early communication and integration
 - Improved HSI by providing design space for collaboration

- SIL will transition from mockup to simulation environment
 - Central to SSC CWE in future
Questions?