Micro-machined High Density Embedded Capacitor Technologies for Energy Storage Applications

by

Thomas A. Baginski, Robert N. Dean, Michael Hamilton, John J. Tatarchuk and Aubrey N. Beal

Auburn University, Auburn AL
MEMS Super Capacitors: Application

• Substrate embeddable to provide current to circuits during power anomaly (i.e. Interposer)

• Requires low inductance path for rapid current discharge

• Requires etched cavities to increase surface area of capacitor
Interposer Provides Power Source Directly to Chips
Approach and Concepts

• Fabricate Planar Structure with SiO$_2$ (relative permittivity \sim 3.8)

• Fabricate Planar Structure with Atomic Level Deposition (ALD) HfO$_2$ (large relative permittivity \sim 25) from multiple vendors

• Fabricate Planar Structure with ALD HfO$_2$ and DRIE etched features

• Characterize Discharge Characteristics

• Summary
MEMS Super Capacitors: Fabrication

- n-type <100> silicon wafers
- Oxidized in steam/dry O$_2$ @ 1050° C for 1-4 hours, 0.15μm < t_{ox} < 0.8μm
- Top side selectively DRIE etched (increase surface area) and selectively doped
- Atomic Level Deposition performed
- Metalized with 100nm Ti /0.4μm of Cu
Basic Atomic Level Deposition Process
Interposer Capacitor 100 mm Silicon Test Wafers

Thermal SiO₂ ALD HfO₂ ALD HfO₂

GIT Cam. Nano.

All Samples Initially Charged to 2V and then Discharged

800nm 3nm & 10nm 30nm
MEMS Super Capacitors: Micromachining Pattern

Layout of Wafer

Layout of Individual Chip
Cylinder and Triangle Pattern Utilized
SEM & Photo Micrographs of DRIE Etched Features
Thermal SiO$_2$ E-beam TiCu

800 nm Thermal SiO$_2$ ebeam TiCu
Ion gun 9nH ESL
ALD HfO$_2$ GIT E-beam TiCu

![Graph showing current vs time for ALD HfO$_2$ GIT E-beam TiCu with three curves for 3 nm and 10 nm thicknesses with and without an ion gun.](image-url)
ALD HfO$_2$ Cam. Nano. E-beam TiCu

30 nm HfO$_2$ Cam. Nano. Trench Etch ebeam TiCu Ion gun 9nH ESL
Half Wafer HfO$_2$ Capacitor

Sample Charged to 12.5V and then Discharged

\[C = \left(\varepsilon_R \varepsilon_0 \text{Area} \right) / t_0 \]

\[C \sim 30,000 \text{nF} \]
Test Circuit for Half Wafer HfO$_2$ Capacitor: 9nH ESL
Ringdown in Time Domain

- 30nm thick hafnium oxide 30,000nF 12.5V discharge with an ESL = 9nH
 ESR = 0.25Ω
FFT of Ringdown

- 30nm thick hafnium oxide 30,000nF 12.5V discharge with an ESL = 9nH
 ESR = 0.25Ω

\[f_r = \frac{1}{2\pi}(LC)^{1/2} \]
MEMS Super Capacitors: SPICE Modeling

- High speed ringdown tests for a variety of configurations performed to determine capacitor performance under rapid discharge conditions

- Empirical data compared graphically to theoretical voltage discharge profiles

- Current discharge calculated from $C(dV/dt)$

- Results plotted and compared
MEMS Super Capacitors: Photos
• 30nm thick hafnium oxide capacitor $C = 734\text{nF}$, 19.5V discharge voltage with an ESL = 25pH ESR = 14mΩ
Ringdown in Time Domain

- 30nm thick hafnium oxide capacitor $C = 734\text{nF}$, 19.5V discharge voltage with an ESL $= 25\text{pH}$ ESR $= 14\text{m}\Omega$
Summary

- Possible to fabricate high value capacitors for interposer

- Rises time dependent upon load

- HfO$_2$ has high dielectric constant (~25)

- SiO$_2$ is more readily available from silicon foundries