Small, high specific Energy Power Sources for Medium Caliber Fuzes

57th Annual Fuze Conference
July 30th, 2014
Harald Wich
Diehl & Eagle Picher GmbH
Overview

- Terminology
- Fuze Power Requirements
- How much is this
- Specific Densities
- What’s around
- Conclusion and Future Work
Terminology

- Voltage
- Wh
- Power
- Ws
- Current
- W
- Coulomb
- C-Rate
- Joule
- OCV
- Capacity
- 5 C
- mAh
- Impedance
- C/5
- Energy
- As
Terminology

- The Electric Circuit

- Voltage [V] x Current [A] = Power [W]
- Current [A] x Time [s] = Capacity [As, Ah]
- \(\frac{1}{\text{Discharge Time [h]}} = \text{C-Rate} \)
What is needed for a Fuze

- Power/Energy Requirement depends on
 - Complexity of Fuze
 - Igniter Circuit
 - Functions
 - Speed
 - Component Selection
 - Design
 - Flight Time

Hear more in # 16521
What is needed for a Fuze

- Legacy Large Caliber Fuzes
What is needed for a Fuze

- New Medium Caliber Fuzes

![Graph showing the relationship between Voltage (U) and Power (P) with various energy levels.]
How much is that

- A few comparisons
Specific Densities

- Why is that so important to you?
 - Power Sources are characterized by capacity
 - Per weight
 - Per volume
 - Fuzes are usually restricted by volume
Specific Densities

- **Energy vs Power**
 - **Beta Batt**
 - Energy: 40 J / mm³ → very high
 - Power: 125 nW / mm³ → very low
 - **ELDC**
 - Energy: 4 mJ / mm³ → low
 - Power: 125 mW / mm³ → high

Example: LTC-Primary Battery
Specific Densities

- C-Rate
 - Tesla Roadster 56 kWh (≈ 200 MJ), max Power 215 kW → 4 C
 - Fuze Battery Large Cal (e.g. 500 J) 200 s (≈ 1/20 h) → 20 C
 Medium Cal (e.g. 5 J) 20 s (≈ 1/200 h) → 200 C!

⇒ If the Battery can manage only 4 C (like a Tesla Roadster)
 it needs 50 times the Capacity the Fuze requires!
What’s around

- Legacy

„Baghdad Batterie“
250 BC

„Patent K. STAMM“
1925

„Duracell AR-13D“
1971
What’s around

- Capacitors
 - Power Density
 - Energy Density; $- \frac{J}{mm^3}$
 - How to charge

- Set-Back Generators; Piezo; Electromagnetic
 - Power Density
 - Energy Density; $< 10 \ \mu J/mm^3$
 - Short Pulse only
What’s around

- Fuze Batteries miniaturized

DEP-14103
- 3 J; 3 \(\text{mJ/mm}^3 \)
- 50 mW
- Ø 11 mm; h 11 mm

DEP-14104
- 10 J; 7 \(\text{mJ/mm}^3 \)
- 75 mW
- Ø 10/11 mm; h 10/13 mm

DEP-14202
- 100 J; 50 \(\text{mJ/mm}^3 \)
- 500 mW
- Ø 10/20 mm; h 3/11 mm
What’s around

- A novel solution

 - Converter + Heat Source → Thermo Electric Generator

 ▶ in barrel heating
 ▶ aerodynamic heating
 ▶ pyrolants (fuel)

$$\eta_{\text{Max}} = \frac{T_{\text{hot}} - T_{\text{cold}}}{T_{\text{hot}}} \cdot \frac{\sqrt{1 + Z_M \cdot \bar{T}} - 1}{\sqrt{1 + Z_M \cdot \bar{T}} + \frac{T_{\text{cold}}}{T_{\text{hot}}}}$$

$$E = \int_{0}^{\infty} P(t)$$
What’s around

- **TEPS**
 - High Energy Density Fuel 4 J/mm^3
 - High burning Temperature
 - Independent of operating Temperature ($\Delta \vartheta$-principle)
What’s around

- **TEPS**
 - Max Power at Start
 - Longer Power than Set-Back
 - Easy charge of
 - Small capacitor
 - High Energy Density
 - Independent of Spin

![Graph showing voltage and energy over time for different heat pellets.](image-url)
What’s around

• TEPS

DEP-15001

100 mJ; 100 μJ/mm³
100 mW
Ø 12.6 mm; h 12.5 mm

DEP-15030

200 mJ; 120 μJ/mm³
200 mW
Ø 17 mm; h 12.5 mm

DEP-15060

2000 mJ; 650 μJ/mm³
1000 mW
Ø 23.6 mm; h 12.5 mm

• Easy to scale Voltage, Energy, Life-Time, Size
Conclusion and Future Work

- Two new Product Lines of small Fuze Power Supplies
- Meet all known Requirements
- Significant increased Energy Density
- Excellent Power Density
- Spinning and Non-Spinning

Future work
- Manufacturability
- Live-Firing
- Qualification
Thank you for your attention!

Questions?
Diehl & Eagle Picher Contact

How to Contact us

- Presenter: Harald Wich
- Mail: Diehl & Eagle Picher GmbH
 Fischbachstrasse 20
 90552 Roethenbach a d Pegnitz
 Germany
- Phone: +49-911-957-2073
- Fax: +49-911-957-2485
- Email: harald.wich@diehl-eagle-picher.com
- Web: www.battery.de