Launching Indirect Fire Weapons Into the 21st Century With Digital Fire Control

Ross Arnold, Victor Galgano & Ralph Tillinghast
May 2014, NDIA
Outline

- Fire Control Definition
- Brief History/Evolution of Fire Control
- The Need for Fire Control
- Application of Technologies
- Integrated Fire Control Systems
- The Future
What is Fire Control?

Acquisition of the target and the implementation of the functions necessary to maximize the effects on target

The functions

- Target Acquisition
- Sensing the environment
- Computation
- Gun / Launcher / Sight Control
- Munitions Interface / Tracking / Data Link
- Network Interface
Functions are the same for all weapon systems - their implementation varies as a function of sophistication and automation through the application of technology.

In a basic engagement:

- The human performs all functions
- But is
 - Limited in range capability
 - Limited in low light and poor weather conditions
- And is
 - Stress dependent
The Early Years

Pre – 1800s
- Line of sight engagements
- Gunner’s quadrant invented
- Primitive optical aiming aids
- Adjustment after fire
- Some crude mechanical aids

1801 - 1900
- No fire control inventions at the system level
- Trend toward automation extended to naval gunnery
- Telescopic Rifle Sights introduced

1901 - 2000
- Firing Table development (WW I)
- Introduction of mechanical computers in ships 1915
- Causes for errors began to be studied
- System addressed as a whole – error budgets
- Significant application of technology in last half of century
Human Senses (Eye, Ears, Nose)

Technologies

- Daylight Optics
- IR Active & Passive
- Radar & Acoustics
- Thermal (1960s; Army Common Modules 1970s;)

Active Infrared light source and viewing telescope
Computation of Ballistics

- Exclusive use of Firing Tables 1900 - 1935
- Initial use of computers for FT 1930s – WW II
- ENIAC & EDVAC for FT generation – WW II
- Computers in a field environment – 1970s to present
 - Modified Point Mass Solution (1960s), NABK (1990s) NATO BK (2000-present)
Enhanced Responsiveness
Accuracy
Survivability

- Digital Communication
 - Call-for-Fire, Met data, Situation Awareness
- On-board Ballistic Computation with sensor inputs
- GPS for on-board navigation and location systems
- Gun Orientation
 - Automated Weapon Control
 - User display
 - Self alignment
 - Sensors

Inertial Sensors

User Displays

<table>
<thead>
<tr>
<th>ACT</th>
<th>DELTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEF 3104</td>
<td>10</td>
</tr>
<tr>
<td>QE 1000</td>
<td>244</td>
</tr>
</tbody>
</table>
Modern Indirect Fire Control System

Digitizing the M1064 with Mortar Fire Control System – M95
1992 - Paladin Continuous upgrades to present

2003 1064 Mortar Carrier

2004 Stryker Mortar Variant

2007 M777

2007 Portable Excalibur Fire Control

2009 Dismounted 120mm

2013 M119A3 Digital Fire Control

2013 Advanced Mortar Protection System (AMPS)
Future Focus Areas

- Network Assisted GPS
 - GPS Denied
- Emphasis on software algorithms/networking
 - Battlefield Decision Aids, Information Fusion, Sensor Fusion
- Increased Mapping Capabilities
- Communication with Smart Munitions
 - Guided (Excalibur, PGK, APMI), Future M119, 81mm mortars & 60mm
- Emphasis on Size, Weight, Power (SWAP)
 - Reduced size, weight and power, e.g. MEMs
 - Efficient functional and physical integration
 - Large system capabilities available for dismounted Soldier
 - Wireless LRU’s
Common Fire Control

- Modular
- Multiplatform

Common Software Architecture
- Digital Comms, Variable Message Format (VMF)
- Ballistics Kernel Interface

Tailored User Interface
- Towed Artillery, Mortars, Self-propelled Artillery, etc.
Questions?

Contact Info:

Ross Arnold
Towed Artillery Software Lead
Fire Control Systems & Technology
US Army ARDEC, RDAR-WSF-M
973.724.8618
ross.arnold@us.army.mil

Ralph Tillinghast
Collaboration Innovation Lab
Lab Director
Fire Control Systems & Technology
US Army ARDEC, RDAR-WSF-M
973.724.2095
ralph.tillinghast@us.army.mil