

Defeating Magnetic Interference on the Battlefield

How multiple sensory inputs are enabling lightweight robust weapon pointing for mortar fire control systems

Presented by Michael Wright & Ralph Tillinghast

Matciser Buktrier National Quality Award 2007 Award Recipient

Distribution Statement A: Approved for public release; distribution is

unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Distribution Statement A : Unclassified

Current Mortar Fire Control

Digital Fire Control (Non-Magnetic)

- M150/M151 120mm Mortar Fire Control
 - Ring Laser Gyro Based system (+/- 1 mil)
 - ~200 lb Fire Control System

Legacy Fire Control (Magnetic)

- M2 Compass
 - Accuracy, +/- 10 mils
 - Handheld, Magnetic
- M2A2 Aiming Circle
 - Accuracy, +/- 2 mil
 - Large, Magnetic, Labor intensive

Current Technology for True North Reference

Commercially available Gyro's:

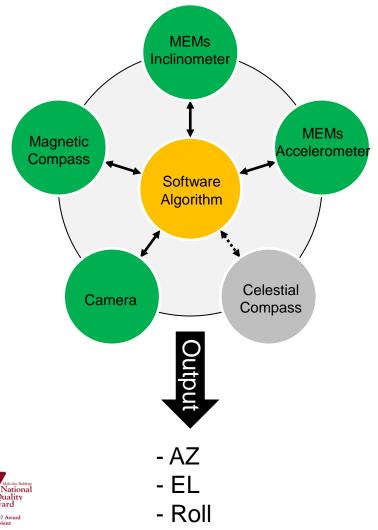
- Ring Laser Gyro (RLG)
 - Accurate, Expensive, Power Hungry, Heavy
- Dynamically Tuned Gyro (DTG)
 - Accurate, Slow
- Fiber Optic Gyro (FOG)
 - Less Accurate, Expensive, Slow
- Hemispherical Resonator Gyro (HRG)
 - Inaccurate, Slow

New Technologies:

- GPS Interferometer
 - Accurate, Slow, Requires GPS signal
- Fluid Gyro
 - Inaccurate, Slow
- Portable Celestial System
 - Accurate, Fast, Degraded at Dusk/Dawn and with Clouds/Fog

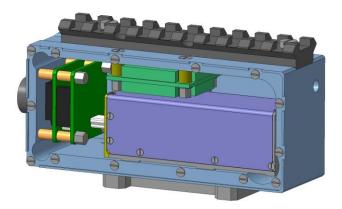
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Magnetic Sensors: North finding easily affected by interference, incorrect declination, and magnetic terrain variations
 - Error is not always evident
 - Reported azimuth value unstable due to floating variations in local magnetic field
- MEMs Inertial Sensors: North finding not accurate, stable, or fast enough for Digital Fire Control
- **Optical Systems:** Cannot handle large or rapid shifts in azimuth and elevation
- Portable Celestial System: Accurate, Fast, Degraded at Dusk/Dawn and with Clouds/Fog


- Combination of technologies required to accurately detect and hold north reference through magnetic interference and firing events
 - Magnetic north reference used to establish direction
 - Accelerometers and gyros used to detect motion to determine if change in magnetic reference is due to motion
 - Optical tracking used to compensate for "noise" in both the magnetic and inertial tracking as well establish known markers for referencing the system back to a known location
 - Celestial System (when available) used for onsite on weapon
 magnetic declination
 - Software Algorithms used to filter the data

Multiple Sensor Based Solution

5 Integrated Technologies

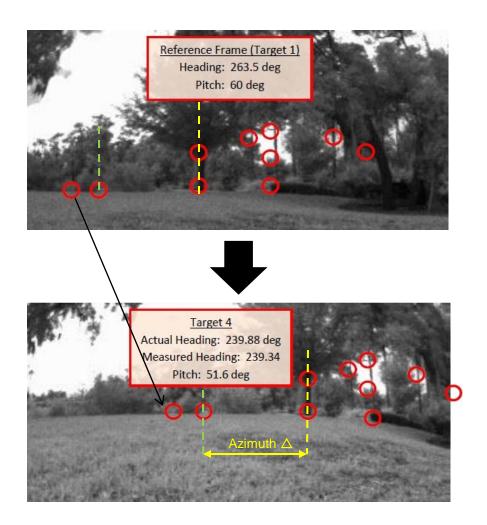


How it works:

Each of the technologies compensate for each other's deficiencies and errors. Acts as a self checking and calibrating system.

Example:

If a magnetic change is sensed but the camera and accelerometers see no change, then magnetic change is ignored.


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

US ARMY

RDECOM

Optical Tracking

RDECOM

Optical Algorithm

- Software tags geographical points
- Software tracks geographical location change relative to calibrated Azimuth

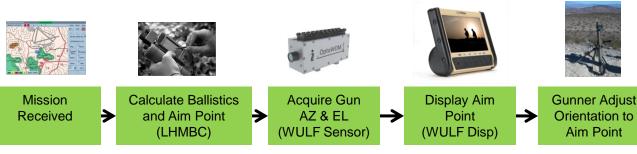
Detailed Process:

- Reference image collected at start up
- Points in the reference are identified like a constellation
- The change in the location of the constellation points is used to determine azimuth change
- Camera distortions are handled by factory calibration
- Linear movements are handled by system algorithms

Current Development Status

OptoWOM,

WULF North Finder


Weaponized Universal Lightweight Fire-Control (WULF)

➡ 5 lbs

RDECOM

- ✤ 3mil Accuracy
- ✤ 3.5 Watts (peak)
- GPS Denied Capable
- No Isolation Required
- ✤ 60, 81 & 120mm Interoperable

Mission Process Flow

81mm Mortar Testing



60mm Mortar Testing

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

WULF Firing

Distribution Statement A : Unclassified

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Questions

10

Contact Info:

Michael Wright

Weaponized Universal Lightweight Fire-Control (WULF) ARDEC Project Officer Fire Control Systems & Technology Directorate US Army ARDEC, RDAR-WSF-M 973.724.8614 michael.t.wright88.civ@mail.mil

Ralph Tillinghast

Collaboration Innovation Lab Lab Director Fire Control Systems & Technology Directorate US Army ARDEC, RDAR-WSF-M 973.724.2095 ralph.c.tillinghast.civ@mail.mil

