

Special Operations Forces Industry Conference (SOFIC)

"Warfighter Requirements" Science & Technology Fusion in Army Special Operations Aviation

> Systems Integration Management Office (SIMO)

> > UNCLASSIFIED

LTC McDonald 21 May 2014

SIMO

(Bob Walker, 270.798.1830, bob.walker@soar.army.mil

 SOFIC Overview addressing Requirements including Science and Technology

- Provide top-level assessment for future requirements across the SOF Aviation Battlefield
- Path and Vision
- S&T potentials
- Conclusion

SIMO Mission

- <u>Design, Develop and Deliver</u>
 <u>Aviation Capability</u> to the
 Army Special Operations
 Aviation Enterprise.
- Empowering *War Fighter Domination* through the most capable rotary-wing, unmanned aerial systems (UAS), fixed-wing and mission systems in the world.
- Maintaining <u>ARSOA</u> <u>Comparative Advantage</u> by means of a technology driven SOF Warrior Focus.

SIMO Core Competencies

(Applies to rotary-wing, unmanned systems and fixed-wing*)

Army Special Operations Aviation

"Tenets and Vision"

SIMO executes its mission and accelerates the force by following four key acquisition principles:

- Delivers capability to the user expeditiously;
- Exploits proven techniques and methods;
- Keeps Warfighters involved throughout the process; and
- Takes risk and manages it.

"Provide the ground commanders the speed, agility, lethality, survivability, depth and networked SA to prevent, shape and win"

Army Special Operations Aviation SOF Tenets

• Ground Forces own the payload

Objective Maneuverability

- Effective maneuver on and around the objective (Air and Ground Element)
- Lighter
 - Fuel efficiency and greater payload

Modular and Reconfigurable

- o Plug and Play
- Common Backplanes and Avionics interchangeable across platforms
- Adaptable
 - Design prevents the Technology from being an Achilles' Heal
- Non-proprietary
 - Government Purpose Rights

VOLARE OPTIMOS

UNCLASSIFIED

Joint Future Operational Environment

Problem Statements:

"I want vertical lift aircraft that fly faster, go farther and carry more stuff...," while maintaining comparative advantage

Brigadier General Clay Hutmacher, Commander United States Army Special Operations Aviation Command (Airborne)

• Food for Thought: We need an affordable and effective integrated pilotage system across the SOF Aviation fleet, to enhance full spectrum operations, especially in degraded visual environments including integrated seamless networked solutions with effective maneuverability on the objective

The biggest impediment for rapid insertion of technology into our aircraft is the platform specific, proprietary architectures that require us to develop, test and field unique solutions for incorporation of technology improvements

Ultimately, SOF Aviation platforms, must perform these tasks to standard, worldwide, in conditions ranging from standard sea level @103° F to high/hot (6K Pressure Altitude / 95° F) across the full spectrum of environmental conditions

Bridging the Valley of Death

USASOAC

RDTE Integration with the PPBE Process

Current Technology Roadmap

	HOSTILE FIRE INDICATION Detect/Defeat Threat Weapons, Disable Shooters	SIGNATURE MANAGEMENT Reduce Detection Radius, Disrupt Aiming		DEGRADED VISUAL ENVIRONMENT SYSTEM Operate Safely in Brownout, Whiteout, and IMC	INTEGRATED AIRBORNE NETWORKING SYSTEM Holistic Waveform Management	
Current Capability	Detect and counter guided munitions with expendables	Exhaust Suppression (Infrared)		Flight Instruments, CAAS cueing	Federated Rover 6 and PRC- 117 (Carry-On) Case-by-case MANET	
Te	Detect unguided projectiles, geolocate source, slave sensors	nature	ure; ag <mark>ile</mark> ning	gnature	DAFCS, synthetic vision for increased control and cueing	Integrated Waveforms & MANET', Federated Link 16
sch Pat	Detect aimed optics, rifle barrels; directed energy replaces expendables	Reduction of visual signature	Reduction of radar signature; agile and cooperative jamming	Reduction of acoustic signature	Fusion of DTED with imagery or EO, integrated cable warning and obstacle avoidance	Hybrid Optical/RF air-to-air links, Msn Planning, Airborne Mesh, Integrated Link 16
	Dazzle shooters and potential shooters, disable RPG fuses prior to impact	Reduction			DTED, imagery, EO, RF, and laser image via HUD	Software Programmable Radios supporting single integration multi-solution set cross domain
Objective Capability	Disable guided and fused weapons prior to launch; surface fire feeds AOR targeting systems	Active signature manipulation; electromagnetic spectrum exploited for feints, saturation and surprise		Integrated Synthetic vision via HUD, expand portion of available of EM spectrum & data available to Crew Members	Fully Displayable, Modular, Air vehicle OFP de-synced Dynamic Tactical Airborne Network with Anti-Cognitive Jamming	

VOLARE OPTIMOS

Increased Effectiveness, Suitability, and Survivability Enroute and on the Objective

ARSOA S&T Interest Areas

 Survivability Signature Reduction Acoustic, RF, IR Aircraft Hardening Redundancy Speed & Range Next Generation	 Situational Awareness Virtual Cockpit UAS Associates Degraded Visual Environment (DVE) Control Sensor Fusion Foliage Penetrating Sensors GPS Denied High Accuracy Precision Navigation 	 Affordability On Condition Maintenance Non-proprietary software Commonality
 Performance Hybrid Engines Active Rotor Control/Coaxial Swashplateless Variable Geometry Rotors Seamless Sea Based 	 Network GIG Compatibility Multi-level Security SW driven waveforms Integrated Assured Comms Seamless Operations (self- joining, self-healing) Anti Cognitive Jamming 	 Lethality Directed Energy Scalable Auto/Ai Target recognition Selectable yield warheads

Conclusion

UNCLASSIFIED

Based upon the ARSOAC Priorities

- Key Areas of Engagement
 - Platform
 - Speed, Range, Payload
 - Maneuverability on the Objective
 - Mission Equipment
 - Survivability
 - Situational Awareness
 - Performance
 - Networking
 - Lethality
 - Affordability
- Solve tomorrows gaps through vision, leading edge technology, rapid fielding, employment and ultimately,

"Violence of Force"

