A Practical Educational Approach to Program Protection Planning

Don S. Gelosh, Ph.D., CSEP-Acq
Director, Systems Engineering

Corporate and Professional Education
540-349-3949
dsgelosh@wpi.edu
cpe.wpi.edu
Background

- The US Department of Defense (DoD) now requires that all major defense acquisition programs have effective program protection planning in place.
- Program Protection Plans are required at each of the three major milestones (A, B and C) and the full rate production review.
- Program Protection Plans must encompass the entire system life cycle from the Material Development Decision to maintaining security during disposal of the system.
- This is a relatively new requirement so many defense contractors are struggling with exactly what the DoD policy and guidance specifies and are not necessarily putting together effective protection plans.
- Effective Program Protection Plans are crucial to developing, delivering and sustaining secure and trusted systems and networks.
- This presentation will describe a practical approach to educating systems engineers on Program Protection Planning.
Source Documents

• Operation of the Defense Acquisition System, DoDI 5000.02, December 8, 2008

• Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN), DoDI 5200.44, November 5, 2012

• Critical Program Information (CPI) Protection Within the Department of Defense, DoD Instruction 5200.39, 2008

• Supply Chain Risk Management (SCRM) to Improve the Integrity of Components Used in DoD Systems, Directive-Type Memorandum 09-016, 2010

When Are the Plans Required*?

A practical educational approach to Program Protection Planning (PPP) is to treat it as a structured way for companies to strategically plan for and manage security risk by identifying and quantifying:

- Probability of Threats
- System Vulnerabilities
- Consequences
- Suitable Countermeasures
How Do We Manage Risk*?

Input Analysis Results:

- Criticality Analysis Results
- Vulnerability Assessment Results
- Threat Analysis Results

Consequence of Losing Mission Capability

Risk Mitigation Decisions

Countermeasure Options

Initial Risk Posture

A Practical Educational Approach

• Practical PPP education should also cover the following concepts in a practical way by exploring best practices as well as the underlying theories:
 • Supply Chain Risk Management
 • System Security Engineering
 • Anti-Counterfeit Parts
 • Anti-Tamper
 • Vendor Certifications
 • Cyber Security
Program Protection Planning
Learning Outcomes

• Develop and implement efficient and effective Program Protection Plans.

• Strategically manage risk by identifying and quantifying the probability of threats, system vulnerabilities and their consequences and identifying suitable countermeasures.

• Critically evaluate valuate internal and external plans.

• Develop and deliver sustainable trusted systems and networks using practical methods and best practices.

• Gain a competitive advantage and become an even greater asset to their organizations.
Example – Graduate Certificate in Program Protection Planning

Required Courses

- Concepts of Systems Engineering
- Engineering Dependable and Secure Systems
- Supply Chain Risk Management
- Practical Applications of Systems Security Engineering
- Protection Planning Across the Program Life Cycle

Electives

- Software Security Design and Analysis
- Network Security
- Operations Risk Management
Learning Outcomes for Concepts of Systems Engineering

• Understand and appreciate fundamental SE principles such as:
 • Requirements Development
 • Functional Analysis and Requirements Allocation
 • System Architecture and System Design
 • Integration, Verification and Validation
 • Trade Studies
 • Systems Analysis, Modeling and Simulation
 • Specialty Engineering
 • Risk Management
 • Technical Planning and Management
Learning Outcomes for Engineering Dependable and Secure Systems

• Understand how to design and build dependable systems that are:
 • Reliable, available, and secure
 • Able to deliver their intended capabilities despite hardware failures, software failures, network failures, external attack, and unexpected behavior

• Understand and appreciate:
 • Dependable system architectures
 • Resilience, security, and quality of service of networks
 • Dependability benchmarking
 • Software reliability
 • Autonomic and adaptable systems
 • Threat analysis and assessment.
Learning Outcomes for Supply Chain Risk Management (SCRM)

• Understand and implement SCRM in a systems security engineering context.
• Understand how to mitigate the risk of counterfeit parts.
• Understand how to mitigate the risk of malicious insertion of code into software, firmware, non-volatile memory, or logic-bearing hardware.
• Understand threats and vulnerabilities to supply chain stakeholders, vendor certifications, and counterfeit parts.
• Understand how these topics impact SCRM throughout the DoD acquisition lifecycle.
Learning Outcomes for Practical Applications of System Security Engineering

• Understand the importance and implementation of System Security Engineering.

• Assess and evaluate threats, vulnerabilities, and countermeasures.

• Understand design and architectural trends and implement techniques in the areas of multilevel and multilateral security.

• Evaluate and implement security domains, physical protection, biometrics, emissions, and network defense.

• Understand the practical use and importance of cryptography, supply chain risk management, information assurance, software assurance and system assurance.
Learning Outcomes for Protection Planning Across the Program Life Cycle

• Understand DoD’s current policy and guidance for Program Protection Planning.

• Use Program Protection Planning theories and methods to inform systems security engineering tradeoffs among risks, costs and benefits across the various phases of a program’s life cycle.

• Use criticality analysis techniques to identify mission critical functions and components.

• Use criticality analysis techniques to determine the consequences of losing mission capability.
Learning Outcomes for Protection Planning Across the Program Life Cycle

• Use threat analysis and vulnerability assessment to identify and manage the likelihood of losing mission capability.

• Assess security risk for the program by analyzing the consequences and likelihood of losing mission capability.

• Implement countermeasures to mitigate risk and neutralize threats and vulnerabilities.

• Implement these systems security engineering practices across the various phases of the program’s life cycle.
Learning Outcomes for Operations Risk Management

• Understand decision making under uncertainty
• Understand classic methods from decision analysis by drawing upon management science and managerial decision-making, including negotiation and cognitive psychology
• Understand how to apply operations risk management to:
 • Quality Assurance
 • Supply Chains
 • Information Security
 • Environmental Management

Worcester Polytechnic Institute
Summary

• This presentation explored a practical educational approach to Program Protection Planning (PPP) by exploring best practices as well as the underlying theories.

• We proposed treating PPP as a structured way for companies to strategically plan for and manage security risk.

• We looked at identifying and quantifying the probability of threats, vulnerabilities and their consequences and identifying suitable countermeasures.

• We included concepts of anti-tamper, anti-counterfeit parts, supply chain risk management, vendor certifications, system security engineering and cyber security.
Questions?