<u>Achieving more statistical power</u> <u>using orthogonal designs</u>

Kedar M. Phadke (kedar@phadkeassociates.com) Madhav S. Phadke, PhD (madhav@phadkeassociates.com) Phadke Associates, Inc.

DoD Memorandum & Publications

- Clear, visionary approach.
- Focus on improving fundamental processes to impact quality of testing at each system phase.

Design of Experiments	(DOE) in Test and	Evaluation
At the request of the Service O hosted a meeting of OTA techr common approach to utilizing D Representatives from ATEC, O from the National Institute of St applicability of DOE principles	perational Test Agency nical and executive age DOE in operational test PTEVFOR, AFOTEC, candards and Technolo to support test and eva	TRUMENT OF DERING
This group endorses the use of analysis, and reporting of integ approach to test and evaluation when applied in a testing progr	f DOE as a discipline to rated testing. DOE offe n. DOE is appropriate f am,	ATTES OF MARKED
		DEPARTMENT OF DEFENSE
Dr. Charles E. McQueary Director, Operational Test & Evaluation	David L. Reeves, Co USMC Director, MCOTEA	SCIENTIFIC TEST AND ANALYSIS TECHNIQUES IN
Roger A. Nadeau, Major	Stephen T. Sargeant	TEST AND EVALUATION
General, USA Commander, ATEC	General, USAF Commander, AFOTE	IMPLEMENTATION PLAN
	L	

DOT&E GUIDANCE PRE – JUNE 28, 2013

Guidance Overview

- Focus on the engineering operational requirements
 - Test parameters ("Factors")
 - The ranges or values of the parameters ("Levels")
 - The outputs and output requirements ("Responses")
 - KPP's, TPM's, etc
 - Acceptable boundaries, confidence level
- Utilize statistical power and confidence as analytical measures of "goodness of test"
 - Single hypothesis framework

DOT&E Guidance (pre June 28, 2013)

Statistical measures of merit (power and confidence) on the relevant response variables for which it makes sense. These statistical measures are important to understand "how much testing is enough?" and can be evaluated by decision-makers on a quantitative basis so they can trade off test resources for desired confidence in results.

- Reference: Guidance on the use of Design of Experiments (DOE) in Operational Test and Evaluation 2010 Oct
 - <u>http://www.dote.osd.mil/pub/reports/20101019GuidanceonuseofDOEin</u> <u>OT&E.pdf</u>

What data you need to compute

statistical test power

- Null Hypothesis
- Alternate Hypothesis
- α (acceptable type 1 error rate)
- Effect size to detect (difference between null and alternate)
- Distribution type of KPP's
- Std Dev of an observation (Standard error σ_s)
- Number of samples

Issues of Single Hypothesis

Framework

- Distribution of tests is unspecified.
- Test case selection can be faulty

DOT&E GUIDANCE POST – JUNE 28, 2013

Guidance to use multiple hypothesis

tests

- "In DOE we are interested multiple hypothesis tests, one for each model term considered." DOT&E July 23, 2013 Memo
- This means we need the following information for each test factor and for each output
 - Null Hypothesis
 - Alternate Hypothesis
 - α (acceptable type 1 error rate)
 - Effect size to detect (difference between null and alternate)
 - Distribution type of KPP's
 - Std Dev of an observation (Standard error σ_s)
 - Number of samples
- Do programs specify this by the parameter?

New Metrics for "Goodness of Test"

- Correlation (aka Pearson Correlation)
 - Describes degree of linear relationship between individual factors. <u>0 is the ideal value</u>.
- Variance Inflation Factor
 - A one number summary describing collinearity with other factors in the model. <u>1 is the ideal</u> value.
- Scaled Prediction Variance
 - Variance of prediction model at a specified location in the design space.
- Reference: "DOT&E 7-23-13 Best Practices for Assessing the Statistical Adequacy of Experimental Designs Used in Operational Test and Evaluation (6866)"

What type of DOE designs score better? Same factors, same levels, one orthogonal and other correlated

А	В	С		А	В	С	
A1	B1	C1		A1	B1	C1	
A1	B1	C1		A1	B2	C2	
A1	B1	C1		A1	B3	C3	
A2	B2	C2		A2	B1	C2	
A2	B2	C2			A2	B2	C3
A2	B2	C2		A2	B3	C1	
A3	B3	C3		A3	B1	C3	
A3	B3	C3		A3	B2	C1	
A3	B3	C3		A3	B3	C2	

Design Type	Correlated	Orthogonal	
Power			
Confidence			
Correlation			
VIF			
SPV			

What about power and confidence? Closer look at effects of correlation on standard error

- Correlations cause an increase in the standard error for estimate of effects
- Many common designs including d-optimal, i-optimal, space filling, and n-way can be correlated.

What does an increase in standard

error mean for test power?

 "Power is a function of the statistical confidence level, the effect size of interest, the variability in the outcomes [standard error], and the number of tests." DOT&E 7-23-2013 Memo

Design Type	Correlated	Orthogonal			
Confidence Level					
Effect Size					
Standard Error	LARGER	More Power			
Number of Tests					
13	© 2013 Phadke Associates	, Inc. All rights reserved.			

What can I do to increase the power

of a correlated design?

What type of DOE designs score better? Same factors, same levels, one orthogonal and other correlated

	А	В	С	A	В	С
	A1	B1	C1	A1	B1	C1
	A1	B1	C1	A1	B2	C2
	A1	B1	C1	A1	B3	C3
	A2	B2	C2	A2	B1	C2
	A2	B2	C2	A2	B2	C3
	A2	B2	C2	A2	B3	C1
	A3	B3	C3	A3	B1	C3
	A3	B3	C3	A3	B2	C1
	A3	B3	C3	A3	B3	C2
_			•			

Design Type	Correlated	Orthogonal	
Power			
Confidence			
Correlation			
VIF	Orthogonal Des	sians score best 🏹	
SPV	for all DOT	&E metrics	

How to score best with DOT&E

<u>guidelines</u>

- Use an orthogonal design to score better for all DOT&E metrics
 - Correlation
 - Variance Inflation Factor
 - Scaled Prediction Variance
 - Power : Get more Power per Test
 - Confidence : Get more Confidence per Test
- If you need to improve test precision, be cautious while using designs such as doptimal, i-optimal, space filling, n-way, and others that can correlate effects.

Facts regarding Orthogonal Designs

- Orthogonal Designs have been widely used in Design of Experiments for decades.
- Fractional Factorial and Factorial Designs are orthogonal designs

Misconception

However, it should be noted that Taguchi designs [orthogonal designs]] ... are inappropriate for characterization because they provide low power for detecting differences in performance across the operational envelope.
DOT&E memo July 23, 2014

Conclusion

- Within the same budget, you can better meet DOT&E Design of Experiments objectives by using orthogonal designs.
 - More statistical power per test!
- To maximize test power and confidence, be cautious while using designs such as doptimal, i-optimal, space filling, n-way, etc. that can correlate effects

About the presenters

- Kedar Phadke is Vice President of Phadke Associates, a global consultancy and software company specializing in statistical tools for improving testing and design productivity. Kedar has led numerous deployments for improving test and design effectiveness. He has a MS in Statistics, MS in Management, and a BS in Economics from the Wharton School, University of Pennsylvania.
- Dr. Madhav S. Phadke is the Founder and President of Phadke Associates, Inc. He is an ASQ Fellow and the author of the first engineering textbook on Robust Design Methods in the US, "Quality Engineering Using Robust Design". He is a recipient of the Technological Innovation Award from IEEE Region 1. He holds a PhD in Mechanical Engineering and MS in Statistics from the University of Wisconsin – Madison, MS in Aerospace Engineering from the University of Rochester, and a BTech in Mechanical Engineering from the Indian Institute of Technology – Mumbai. Prior to founding Phadke Associates, Dr. Phadke was a manager in AT&T Bell Labs, a visiting scientist at the IBM Watson Research Center, and a Research Associate in Statistics Department and the Army Math Research Center at the University of Wisconsin – Madison.

Contact info

- Phone: 908-770-7400
- Email: kedar@phadkeassociates.com
- Web: <u>www.phadkeassociates.com</u>

